Suppr超能文献

DLAAD——使用放射医学图像的深度学习算法辅助胸部疾病诊断。

DLAAD-deep learning algorithms assisted diagnosis of chest disease using radiographic medical images.

作者信息

Al-Adhaileh Mosleh Hmoud, Alsharbi Bayan M, Aldhyani Theyazn H H, Ahmad Sultan, Almaiah Mohammed Amin, Ahmed Zeyad A T, AbdelRahman Saad M, Alzain Elham, Singh Shilpi

机构信息

Deanship of E-Learning and Distance Education and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia.

Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia.

出版信息

Front Med (Lausanne). 2025 Mar 7;11:1511389. doi: 10.3389/fmed.2024.1511389. eCollection 2024.

Abstract

INTRODUCTION

Viral infections can cause pneumonia, which is difficult to diagnose using chest X-rays due to its similarities with other respiratory conditions. Current pneumonia diagnosis techniques have limited accuracy. Novelty, of this research is developed a application of deep learning algorithms is essential in enhancing the medical infrastructure used in the diagnosis of chest diseases via the integration of modern technologies into medical devices.

METHODS

This study presents a transfer learning approach, using MobileNetV2, VGG-16, and ResNet50V2 to categorize chest disorders via X-ray images, with the objective of improving the efficiency and accuracy of computer-aided diagnostic systems (CADs). This research project examines the suggested transfer learning methodology using a dataset of 5,863 chest X-ray images classified into two categories: pneumonia and normal. The dataset was restructured to 224 × 224 pixels, and augmentation techniques were used during the training of deep learning models to mitigate overfitting in the proposed system. The classification head was subjected to regularization to improve performance. Many performance criteria are typically used to evaluate the effectiveness of the suggested strategies. The performance of MobileNetV2, given its regularized classification head, exceeds that of the previous models.

RESULTS

The suggested system identifies images as members of the two categories (pneumonia and normal) with 92% accuracy. The suggested technique exhibits superior accuracy as compared to currently available ones regarding the diagnosis the chest diseases.

DISCUSSION

This system can help enhance the domain of medical imaging and establish a basis for future progress in deep-learning-based diagnostic systems for pulmonary disorders.

摘要

引言

病毒感染可导致肺炎,由于其与其他呼吸道疾病相似,使用胸部X光片难以诊断。目前的肺炎诊断技术准确性有限。本研究的新颖之处在于,通过将现代技术集成到医疗设备中,开发深度学习算法在增强胸部疾病诊断所用医疗基础设施方面至关重要。

方法

本研究提出一种迁移学习方法,使用MobileNetV2、VGG - 16和ResNet50V2通过X光图像对胸部疾病进行分类,目的是提高计算机辅助诊断系统(CAD)的效率和准确性。本研究项目使用一个包含5863张胸部X光图像的数据集来检验所建议的迁移学习方法,该数据集分为肺炎和正常两类。数据集被重新调整为224×224像素,并在深度学习模型训练期间使用增强技术来减轻所提出系统中的过拟合。对分类头进行正则化以提高性能。通常使用许多性能标准来评估所建议策略的有效性。鉴于其正则化分类头,MobileNetV2的性能超过了先前的模型。

结果

所建议的系统以92%的准确率将图像识别为两类(肺炎和正常)的成员。与目前可用的胸部疾病诊断技术相比,所建议的技术表现出更高的准确性。

讨论

该系统有助于扩展医学成像领域,并为基于深度学习的肺部疾病诊断系统的未来发展奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a240/11926135/90beeef4f886/fmed-11-1511389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验