Suppr超能文献

CellPhoneDB v5:从单细胞多组学数据推断细胞间通讯

CellPhoneDB v5: inferring cell-cell communication from single-cell multiomics data.

作者信息

Troulé Kevin, Petryszak Robert, Cakir Batuhan, Cranley James, Harasty Alicia, Prete Martin, Tuong Zewen Kelvin, Teichmann Sarah A, Garcia-Alonso Luz, Vento-Tormo Roser

机构信息

Wellcome Sanger Institute, Cambridge, UK.

Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.

出版信息

Nat Protoc. 2025 Mar 25. doi: 10.1038/s41596-024-01137-1.

Abstract

Cell-cell communication is essential for tissue development, function and regeneration. The revolution of single-cell genomics technologies offers an unprecedented opportunity to uncover how cells communicate in vivo within their tissue niches and how disruption of these niches can lead to diseases and developmental abnormalities. CellPhoneDB is a bioinformatics toolkit designed to infer cell-cell communication by combining a curated repository of bona fide ligand-receptor interactions with methods to integrate these interactions with single-cell genomics data. Here we present a protocol for the latest version of CellPhoneDB (v5), offering several new features. First, the repository has been expanded by one-third with the addition of new interactions, including ~1,000 interactions mediated by nonpeptidic ligands such as steroidogenic hormones, neurotransmitters and small G-protein-coupled receptor (GPCR)-binding ligands. Second, we outline a new way of using the database that allows users to tailor queries to their experimental designs. Third, the update incorporates novel strategies to prioritize specific cell-cell interactions, leveraging information from other modalities such as tissue microenvironments derived from spatial transcriptomics technologies or transcription factor activities derived from a single-cell assay for transposase accessible chromatin assays. Finally, we describe the new CellPhoneDBViz module to interactively visualize and share results. Altogether, CellPhoneDB v5 enhances the precision of cell-cell communication inference, offering new insights into tissue biology in physiological microenvironments. This protocol typically takes ~15 min and requires basic knowledge of python.

摘要

细胞间通讯对于组织发育、功能及再生至关重要。单细胞基因组学技术的革新为揭示细胞如何在其组织微环境中进行体内通讯以及这些微环境的破坏如何导致疾病和发育异常提供了前所未有的机遇。CellPhoneDB是一个生物信息学工具包,旨在通过将经过整理的真实配体-受体相互作用库与将这些相互作用与单细胞基因组学数据整合的方法相结合,来推断细胞间通讯。在此,我们介绍最新版本的CellPhoneDB(v5)的方案,其具有多项新特性。首先,通过添加新的相互作用,库已扩展了三分之一,包括约1000种由非肽类配体介导的相互作用,如类固醇生成激素、神经递质和小G蛋白偶联受体(GPCR)结合配体。其次,我们概述了一种使用该数据库的新方法,允许用户根据其实验设计定制查询。第三,更新纳入了新策略,以利用来自其他模态的信息(如源自空间转录组学技术的组织微环境或源自单细胞转座酶可及染色质分析的转录因子活性)对特定细胞间相互作用进行优先级排序。最后,我们描述了新的CellPhoneDBViz模块,用于交互式可视化和共享结果。总体而言,CellPhoneDB v5提高了细胞间通讯推断的精度,为生理微环境中的组织生物学提供了新见解。该方案通常耗时约15分钟,需要具备基本的Python知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验