Suppr超能文献

三种淋巴结分期系统对结肠癌患者术后复发的预测性能分析。

Analysis of the predictive postoperative recurrence performance of three lymph node staging systems in patients with colon cancer.

作者信息

Meng Ning, Wang Zhiqiang, Peng Yaqi, Wang Xiaoyan, Yue Wenju, Wang Le, Ma Wenqian

机构信息

Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China.

Basic College, Hebei Medical University, Shijiazhuang, Hebei, China.

出版信息

Front Oncol. 2025 Mar 11;15:1545082. doi: 10.3389/fonc.2025.1545082. eCollection 2025.

Abstract

BACKGROUND

Colon cancer remains a major cause of cancer-related deaths worldwide, with recurrence post-surgery, posing a significant challenge. Accurate lymph node (LN) staging is critical for prognosis and treatment decisions, but traditional systems, such as the AJCC TNM, often fail to predict recurrence. This study compares the prognostic performance of three LN staging systems Lymph Node Ratio (LNR), Log Odds of Metastatic Lymph Nodes (LODDS), and pN in colon cancer.

METHODS

We retrospectively analyzed data from 812 colon cancer patients who underwent radical surgery at two tertiary hospitals (2010-2019). LNR, LODDS, and pN were calculated, and their ability to predict postoperative recurrence was assessed using C-index, AIC, BIC, and ROC curves. Machine learning models (LASSO, Random Forest, XGBoost) identified the most predictive staging system. A nomogram was developed integrating the best staging system with clinical factors to predict postoperative recurrence.

RESULTS

The study identified LNR as the most predictive staging system for colon cancer. The nomogram based on LNR, along with other variables such as T stage and tumor grade, demonstrated superior predictive performance compared to individual staging systems. In the training cohort, the nomogram achieved an AUC of 0.791 at 1 year, 0.815 at 3 years, and 0.789 at 5 years. The C-index for the nomogram was 0.788, higher than that of LNR (C-index = 0.694) and tumor stage (C-index = 0.665). The nomogram successfully stratified patients into high- and low-risk groups, with higher risk scores correlating with poorer survival outcomes. The validation cohort confirmed the robustness of the model, showing that patients with lower risk scores had better prognoses.

CONCLUSIONS

LNR is an effective predictor of recurrence and prognosis in colon cancer. The nomogram developed from LNR and other clinical factors offers superior prognostication and can aid in personalized treatment strategies.

摘要

背景

结肠癌仍然是全球癌症相关死亡的主要原因,术后复发带来了重大挑战。准确的淋巴结(LN)分期对于预后和治疗决策至关重要,但传统系统,如美国癌症联合委员会(AJCC)的TNM分期,往往无法预测复发情况。本研究比较了三种LN分期系统——淋巴结比率(LNR)、转移淋巴结的对数优势(LODDS)和pN在结肠癌中的预后性能。

方法

我们回顾性分析了在两家三级医院(2010 - 2019年)接受根治性手术的812例结肠癌患者的数据。计算了LNR、LODDS和pN,并使用C指数、AIC、BIC和ROC曲线评估了它们预测术后复发的能力。机器学习模型(LASSO、随机森林、XGBoost)确定了最具预测性的分期系统。开发了一种列线图,将最佳分期系统与临床因素相结合,以预测术后复发情况。

结果

该研究确定LNR是结肠癌最具预测性的分期系统。基于LNR的列线图,连同其他变量如T分期和肿瘤分级,与单个分期系统相比,显示出卓越的预测性能。在训练队列中,列线图在1年时的AUC为0.791,3年时为0.815,5年时为0.789。列线图的C指数为0.788,高于LNR(C指数 = 0.694)和肿瘤分期(C指数 = 0.665)。列线图成功地将患者分为高风险和低风险组,风险评分越高,生存结果越差。验证队列证实了该模型的稳健性,表明风险评分较低的患者预后更好。

结论

LNR是结肠癌复发和预后的有效预测指标。由LNR和其他临床因素开发的列线图提供了卓越的预后评估,有助于制定个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1130/11932909/88543daf0705/fonc-15-1545082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验