Suppr超能文献

使用姿态估计模型自动检测不正确的举重姿势。

Automatic Detect Incorrect Lifting Posture with the Pose Estimation Model.

作者信息

Hsu Gee-Sern Jison, Wu Jie Syuan, Huang Yin-Kai Dean, Chiu Chun-Chieh, Kang Jiunn-Horng

机构信息

Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.

出版信息

Life (Basel). 2025 Feb 24;15(3):358. doi: 10.3390/life15030358.

Abstract

Occupational low back pain (LBP) is a pervasive health issue that significantly impacts productivity and contributes to work-related musculoskeletal disorders (WMSDs). Inadequate lifting postures are a primary, modifiable risk factor associated with LBP, making early detection of unsafe practices crucial to mitigating occupational injuries. Our study aims to address these limitations by developing a markerless, smartphone-based camera system integrated with a deep learning model capable of accurately classifying lifting postures. We recruited 50 healthy adults who participated in lifting tasks using correct and incorrect postures to build a robust dataset. Participants lifted boxes of varying sizes and weights while their movements were recorded from multiple angles and heights to ensure comprehensive data capture. We used the OpenPose algorithm to detect and extract key body points to calculate relevant biomechanical features. These extracted features served as inputs to a bidirectional long short-term memory (LSTM) model, which classified lifting postures into correct and incorrect categories. : Our model demonstrated high classification accuracy across all datasets, with accuracy rates of 96.9% for Tr, 95.6% for the testing set, and 94.4% for training. We observed that environmental factors, such as camera angle and height, slightly influenced the model's accuracy, particularly in scenarios where the subject's posture partially occluded key body points. Nonetheless, these variations were minor, confirming the robustness of our system across different conditions. This study demonstrates the feasibility and effectiveness of a smartphone camera and AI-based system for lifting posture classification. The system's high accuracy, low setup cost, and ease of deployment make it a promising tool for enhancing workplace ergonomics. This approach highlights the potential of artificial intelligence to improve occupational safety and underscores the relevance of affordable, scalable solutions in the pursuit of healthier workplaces.

摘要

职业性腰痛(LBP)是一个普遍存在的健康问题,严重影响生产力,并导致与工作相关的肌肉骨骼疾病(WMSDs)。不适当的提举姿势是与腰痛相关的主要可改变风险因素,因此早期发现不安全行为对于减轻职业伤害至关重要。我们的研究旨在通过开发一种基于智能手机的无标记摄像头系统来解决这些局限性,该系统集成了一个能够准确分类提举姿势的深度学习模型。我们招募了50名健康成年人,他们使用正确和不正确的姿势参与提举任务,以建立一个强大的数据集。参与者在提举不同大小和重量的箱子时,从多个角度和高度记录他们的动作,以确保全面的数据采集。我们使用OpenPose算法来检测和提取关键身体部位,以计算相关的生物力学特征。这些提取的特征作为双向长短期记忆(LSTM)模型的输入,该模型将提举姿势分为正确和不正确两类。我们的模型在所有数据集中都表现出了很高的分类准确率,训练集的准确率为94.4%,测试集的准确率为95.6%,训练集的准确率为96.9%。我们观察到,环境因素,如摄像头角度和高度,对模型的准确率有轻微影响,特别是在受试者的姿势部分遮挡关键身体部位的情况下。尽管如此,这些变化很小,证实了我们的系统在不同条件下的稳健性。这项研究证明了基于智能手机摄像头和人工智能的系统用于提举姿势分类的可行性和有效性。该系统的高准确率、低设置成本和易于部署使其成为改善工作场所人体工程学的一个有前途的工具。这种方法突出了人工智能在改善职业安全方面的潜力,并强调了在追求更健康的工作场所中,经济实惠、可扩展解决方案的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac7/11943959/e257caac3a06/life-15-00358-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验