Suppr超能文献

早期地球和系外行星大气中碳、氮和硫同位素的生物学、平衡和光化学特征

Biological, Equilibrium and Photochemical Signatures of C, N and S Isotopes in the Early Earth and Exoplanet Atmospheres.

作者信息

Lyons James R

机构信息

Planetary Science Institute, 1700 Fort Lowell, Tucson, AZ 85719, USA.

出版信息

Life (Basel). 2025 Mar 3;15(3):398. doi: 10.3390/life15030398.

Abstract

The unambiguous detection of biosignatures in exoplanet atmospheres is a primary objective for astrobiologists and exoplanet astronomers. The primary methodology is the observation of combinations of gases considered unlikely to coexist in an atmosphere or individual gases considered to be highly biogenic. Earth-like examples of the former include CH and O, and the latter includes dimethyl sulfide (DMS). To improve the plausibility of the detection of life, I argue that the isotope ratios of key atmospheric species are needed. The C isotope ratios of CO and CH are especially valuable. On Earth, thermogenesis and volcanism result in a substantial difference in δC between atmospheric CH and CO of ~-25‱. This difference could have changed significantly, perhaps as large as -95‱ after the evolution of hydrogenotrophic methanogens. In contrast, nitrogen fixation by nitrogenase results in a relatively small difference in δN between N and NH. Isotopic biosignatures on ancient Earth and rocky exoplanets likely coexist with much larger photochemical signatures. Extreme δN enrichment in HCN may be due to photochemical self-shielding in N, a purely abiotic process. Spin-forbidden photolysis of CO produces CO with δC < -200‱, as has been observed in the Venus mesosphere. Self-shielding in SO may generate detectable S enrichment in SO in atmospheres similar to that of WASP-39b. Sufficiently precise isotope ratio measurements of these and related gases in terrestrial-type exoplanet atmospheres will require instruments with significantly higher spectral resolutions and light-collecting areas than those currently available.

摘要

在系外行星大气中明确检测到生物特征是天体生物学家和系外行星天文学家的主要目标。主要方法是观测那些被认为不太可能在大气中共存的气体组合,或者被认为具有高度生物成因的单个气体。前者类似地球的例子包括CH和O,后者包括二甲基硫醚(DMS)。为了提高探测生命的可信度,我认为需要关键大气成分的同位素比值。CO和CH的碳同位素比值尤其有价值。在地球上,热成因和火山活动导致大气中CH和CO的δC之间存在约-25‱的显著差异。这种差异可能发生了显著变化,在氢营养型产甲烷菌进化后可能高达-95‱。相比之下,固氮酶固定氮导致N和NH之间的δN差异相对较小。古代地球和岩石系外行星上的同位素生物特征可能与大得多的光化学特征共存。HCN中极端的δN富集可能是由于N中的光化学自屏蔽,这是一个纯粹的非生物过程。CO的自旋禁阻光解产生δC < -200‱的CO,正如在金星中层大气中观测到的那样。SO中的自屏蔽可能在类似于WASP - 39b的大气中产生可检测到的SO中S的富集。要对类地系外行星大气中的这些及相关气体进行足够精确的同位素比值测量,将需要具有比目前可用仪器更高光谱分辨率和更大集光面积的仪器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a39/11944001/922e77325734/life-15-00398-g010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验