Suppr超能文献

智能医疗中的联邦学习:关于隐私、安全以及与物联网集成的预测分析的全面综述

Federated Learning in Smart Healthcare: A Comprehensive Review on Privacy, Security, and Predictive Analytics with IoT Integration.

作者信息

Abbas Syed Raza, Abbas Zeeshan, Zahir Arifa, Lee Seung Won

机构信息

Department of Bioscience, COMSATS University, Islamabad 45550, Pakistan.

Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.

出版信息

Healthcare (Basel). 2024 Dec 22;12(24):2587. doi: 10.3390/healthcare12242587.

Abstract

Federated learning (FL) is revolutionizing healthcare by enabling collaborative machine learning across institutions while preserving patient privacy and meeting regulatory standards. This review delves into FL's applications within smart health systems, particularly its integration with IoT devices, wearables, and remote monitoring, which empower real-time, decentralized data processing for predictive analytics and personalized care. It addresses key challenges, including security risks like adversarial attacks, data poisoning, and model inversion. Additionally, it covers issues related to data heterogeneity, scalability, and system interoperability. Alongside these, the review highlights emerging privacy-preserving solutions, such as differential privacy and secure multiparty computation, as critical to overcoming FL's limitations. Successfully addressing these hurdles is essential for enhancing FL's efficiency, accuracy, and broader adoption in healthcare. Ultimately, FL offers transformative potential for secure, data-driven healthcare systems, promising improved patient outcomes, operational efficiency, and data sovereignty across the healthcare ecosystem.

摘要

联邦学习(FL)正在彻底改变医疗保健行业,它通过跨机构实现协作式机器学习,同时保护患者隐私并符合监管标准。本综述深入探讨了FL在智能健康系统中的应用,特别是其与物联网设备、可穿戴设备和远程监测的集成,这些集成实现了用于预测分析和个性化护理的实时、分散式数据处理。它解决了关键挑战,包括对抗性攻击、数据中毒和模型反转等安全风险。此外,它还涵盖了与数据异质性、可扩展性和系统互操作性相关的问题。除此之外,该综述强调了新兴的隐私保护解决方案,如差分隐私和安全多方计算,对于克服FL的局限性至关重要。成功克服这些障碍对于提高FL在医疗保健中的效率、准确性和更广泛采用至关重要。最终,FL为安全、数据驱动的医疗保健系统提供了变革潜力,有望在整个医疗保健生态系统中改善患者预后、运营效率和数据主权。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f99f/11728217/14e0a1dd3700/healthcare-12-02587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验