文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Usage Frequency and Ecotoxicity of Skin Depigmenting Agents.

作者信息

Mota Sandra, Rego Liliana, Sousa Emília, Cruz Maria Teresa, Almeida Isabel Martins de

机构信息

Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

UCIBIO-Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

出版信息

Pharmaceuticals (Basel). 2025 Mar 4;18(3):368. doi: 10.3390/ph18030368.


DOI:10.3390/ph18030368
PMID:40143144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11945762/
Abstract

Depigmenting cosmetic products are a fast-growing segment of the health products market, driven by consumer demand to address skin hyperpigmentation. Simultaneously, interest in products with a reduced environmental impact is increasing. However, the potential environmental risks, especially in aquatic ecosystems, of depigmenting products remain unexplored. This study assesses the usage frequency of skin depigmenting agents in cosmetic products and compiles data on the biodegradability and acute aquatic toxicity of the most prevalent compounds. A market analysis of Portuguese pharmacies and parapharmacies in 2022 identified prevalent depigmenting agents. Scientific evidence on their biodegradability and acute aquatic toxicity was compiled, and when data was unavailable, in silico predictions were conducted. The study identified the ten most-used depigmenting agents in cosmetic products, including hydroxy/keto acids, as well as vitamin C and derivatives, with a usage frequency surpassing 50%. While most were naturally derived and showed low environmental risk, synthetic and highly lipophilic depigmenting agents found in 35 of 70 products (ascorbyl tetraisopalmitate/tetrahexyldecyl ascorbate and resorcinol derivatives) showed a higher potential for environmental hazard. The findings underscore the need for further research on the presence of these cosmetic ingredients in aquatic ecosystems and a reassessment of regulatory frameworks concerning their environmental impact. Mitigation strategies should emphasize biodegradable alternatives, renewable sources, and molecular modifications to reduce toxicity while maintaining depigmenting efficacy and skin safety. This study provides original insights into commonly used depigmenting agents in the health products market and their chemical structures, offering valuable opportunities for innovation in chemical/pharmaceutical industries.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/bf1cbf7d4961/pharmaceuticals-18-00368-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/99b8fa069de6/pharmaceuticals-18-00368-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/68e9a12b8111/pharmaceuticals-18-00368-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/7021ae00f03e/pharmaceuticals-18-00368-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/a86b506b7add/pharmaceuticals-18-00368-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/d0c870276e1a/pharmaceuticals-18-00368-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/71ed84176649/pharmaceuticals-18-00368-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/7586acc11ec8/pharmaceuticals-18-00368-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/ccff1e817c59/pharmaceuticals-18-00368-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/844a390ff33c/pharmaceuticals-18-00368-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/89eefafa5d20/pharmaceuticals-18-00368-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/dd35960f69bc/pharmaceuticals-18-00368-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/74e0b976ee14/pharmaceuticals-18-00368-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/c89a2f5c50cd/pharmaceuticals-18-00368-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/51ad8d278922/pharmaceuticals-18-00368-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/6e9ac8602f64/pharmaceuticals-18-00368-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/89ba1caf1a43/pharmaceuticals-18-00368-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/6f619893a458/pharmaceuticals-18-00368-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/bf1cbf7d4961/pharmaceuticals-18-00368-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/99b8fa069de6/pharmaceuticals-18-00368-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/68e9a12b8111/pharmaceuticals-18-00368-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/7021ae00f03e/pharmaceuticals-18-00368-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/a86b506b7add/pharmaceuticals-18-00368-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/d0c870276e1a/pharmaceuticals-18-00368-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/71ed84176649/pharmaceuticals-18-00368-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/7586acc11ec8/pharmaceuticals-18-00368-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/ccff1e817c59/pharmaceuticals-18-00368-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/844a390ff33c/pharmaceuticals-18-00368-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/89eefafa5d20/pharmaceuticals-18-00368-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/dd35960f69bc/pharmaceuticals-18-00368-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/74e0b976ee14/pharmaceuticals-18-00368-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/c89a2f5c50cd/pharmaceuticals-18-00368-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/51ad8d278922/pharmaceuticals-18-00368-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/6e9ac8602f64/pharmaceuticals-18-00368-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/89ba1caf1a43/pharmaceuticals-18-00368-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/6f619893a458/pharmaceuticals-18-00368-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e371/11945762/bf1cbf7d4961/pharmaceuticals-18-00368-g018.jpg

相似文献

[1]
Usage Frequency and Ecotoxicity of Skin Depigmenting Agents.

Pharmaceuticals (Basel). 2025-3-4

[2]
Comparative Studies on the Photoreactivity, Efficacy, and Safety of Depigmenting Agents.

Pharmaceuticals (Basel). 2023-12-28

[3]
Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

Int J Toxicol. 2005

[4]
[Depigmentation for cosmetic purposes: prevalence and side-effects in a female population in Senegal].

Ann Dermatol Venereol. 2001

[5]
Status of cosmetic safety in Malaysia market: Mercury contamination in selected skin whitening products.

J Cosmet Dermatol. 2022-12

[6]
A systematic review on the skin whitening products and their ingredients for safety, health risk, and the halal status.

J Cosmet Dermatol. 2021-4

[7]
How to Promote Skin Repair? In-Depth Look at Pharmaceutical and Cosmetic Strategies.

Pharmaceuticals (Basel). 2023-4-11

[8]
The development and application of a novel hazard scoring tool for assessing impacts of cosmetic ingredients on aquatic ecosystems: A case study of rinse-off cosmetics.

Integr Environ Assess Manag. 2023-11

[9]
Natural products in cosmetics.

Nat Prod Bioprospect. 2022-11-28

[10]
Nail Discoloration Following the Chronic Use of Skin-Depigmenting Creams.

Cureus. 2024-8-25

引用本文的文献

[1]
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics.

Mar Drugs. 2025-7-26

本文引用的文献

[1]
Peptides: Emerging Candidates for the Prevention and Treatment of Skin Senescence: A Review.

Biomolecules. 2025-1-9

[2]
Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action.

Int J Cosmet Sci. 2025-2

[3]
Evaluating the Efficacy and Safety of Alpha-Hydroxy Acids in Dermatological Practice: A Comprehensive Clinical and Legal Review.

Clin Cosmet Investig Dermatol. 2024-7-16

[4]
The multiple uses of azelaic acid in dermatology: mechanism of action, preparations, and potential therapeutic applications.

Postepy Dermatol Alergol. 2023-12

[5]
A systematic review to evaluate the efficacy of azelaic acid in the management of acne, rosacea, melasma and skin aging.

J Cosmet Dermatol. 2023-10

[6]
The Effectiveness of Pyruvic Acid Peeling in Improving the Quality of Life of Patients with Acne Vulgaris.

J Clin Med. 2023-5-22

[7]
Use of Retinoids in Topical Antiaging Treatments: A Focused Review of Clinical Evidence for Conventional and Nanoformulations.

Adv Ther. 2022-12

[8]
Potential application of natural bioactive compounds as skin-whitening agents: A review.

J Cosmet Dermatol. 2022-12

[9]
SUPPLEMENT ARTICLE: Retinol: The Ideal Retinoid for Cosmetic Solutions.

J Drugs Dermatol. 2022-7-1

[10]
Ascorbic acid 2-glucoside: An ascorbic acid pro-drug with longer-term antioxidant efficacy in skin.

Int J Cosmet Sci. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索