Elhosseny Mohamed, Abdel-Salam Mahmoud, El-Hasnony Ibrahim M
College of Computing and Informatics, University of Sharjah, Sharjah, UAE.
Faculty of Computers and Information Science, Mansoura University, Mansoura, Egypt.
Sci Rep. 2025 Mar 27;15(1):10656. doi: 10.1038/s41598-024-81144-0.
The Crayfish Optimization Algorithm (COA) is a recent powerful algorithm that is sometimes plagued by poor convergence speed and a tendency to rapidly converge to the local optimum. This study introduces a variation of the COA called Adaptive Dynamic COA with a Locally enhanced escape operator (AD-COA-L) to tackle these issues. Firstly, the algorithm utilizes the Bernoulli map initialization strategy to quickly establish a high-quality population that is evenly distributed. This helps the algorithm to promptly reach the proper search area. Additionally, in order to mitigate the likelihood of getting trapped in local optima and improve the quality of the obtained solution, an Adaptive Lens Opposition-Based Learning (ALOBL) mechanism is applied. Moreover, the local escape operator (LEO) is utilized to aggressively discourage the adoption of isolated solutions and encourage the sharing of information within the search area. Finally, a new inertia weight is suggested to improve the search capability of COA and prevent it from being stuck in local optima by enhancing the exploitation capability of COA. AD-COA-L is evaluated against eight advanced state-of-the-art variations and ten classical and recent metaheuristic algorithms on 29 benchmark functions from CEC2017 of varying dimensions (50 and 100). AD-COA-L demonstrates superior accuracy, balanced exploration-exploitation and convergence speed, compared to other algorithms across most benchmark functions. Furthermore, we evaluated the proficiency of AD-COA-L in tackling seven demanding real-world and restricted engineering optimization challenges. The experimental findings clearly illustrate the competitiveness and advantages of the proposed AD-COA-L algorithm.
小龙虾优化算法(COA)是一种近期出现的强大算法,但有时会受到收敛速度慢以及容易迅速收敛到局部最优的困扰。本研究引入了一种名为带局部增强逃逸算子的自适应动态COA(AD - COA - L)的COA变体来解决这些问题。首先,该算法利用伯努利映射初始化策略快速建立一个均匀分布的高质量种群。这有助于算法迅速到达合适的搜索区域。此外,为了降低陷入局部最优的可能性并提高所获得解的质量,应用了基于自适应透镜对立学习(ALOBL)机制。而且,利用局部逃逸算子(LEO)强烈抑制孤立解的采用,并鼓励在搜索区域内共享信息。最后,提出了一种新的惯性权重,以提高COA的搜索能力,并通过增强COA的开发能力防止其陷入局部最优。在来自CEC2017的29个不同维度(50维和100维)的基准函数上,将AD - COA - L与八种先进的最新变体以及十种经典和近期的元启发式算法进行了评估。与大多数基准函数上的其他算法相比,AD - COA - L展示出了卓越的准确性、平衡的探索 - 开发能力和收敛速度。此外,我们评估了AD - COA - L在解决七个具有挑战性的现实世界和受限工程优化问题方面的能力。实验结果清楚地说明了所提出的AD - COA - L算法的竞争力和优势。