Chen Junwei, Du Yuhan, Yu Qi, Liu Dongyu, Zhang Jinming, Luo Tingyue, Huang Haohua, Cai Shaoxi, Dong Hangming
Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China.
Department of Respiratory Medicine, Nanfang Hospital, No. 1838, North Guangzhou Avenue,Baiyun District,, Guangzhou City, China.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar 28. doi: 10.1007/s00210-025-04076-0.
The molecular link between endoplasmic reticulum stress (ERS) and idiopathic pulmonary fibrosis (IPF) remains elusive. Our study aimed to uncover core mechanisms and new therapeutic targets for IPF. By analyzing gene expression profiles from the Gene Expression Omnibus (GEO) database, we identified 1519 differentially expressed genes (DEGs) and 11 ERS-related genes (ERSRGs) diagnostic for IPF. Using weighted gene co-expression network analysis (WGCNA) and differential expression analysis, key genes linked to IPF were pinpointed. CIBERSORT was used to assess immune cell infiltration, while the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore biological mechanisms. In three GEO datasets (GSE150910, GSE92592, and GSE124685), the receiver operating characteristic (ROC) curve analysis showed area under the ROC curve (AUC) > 0.7 for all ERSRGs. The Connectivity Map (CMap) database was used to predict small molecules modulating IPF signatures. The molecular docking energies of mirdametinib with protein targets ranged from - 5.1643 to - 8.0154 kcal/mol, while those of linsitinib ranged from - 5.6031 to - 7.902 kcal/mol. Molecular docking and animal experiments were performed to validate the therapeutic potential of identified compounds, with mirdametinib showing specific effects in a murine bleomycin-induced pulmonary fibrosis model. In vitro experiments indicated that mirdametinib may alleviate pulmonary fibrosis by reducing ERS via the PI3K/Akt/mTOR pathway. Our findings highlight 11 ERSRGs as predictors of IPF and demonstrate the feasibility of bioinformatics in drug discovery for IPF treatment.
内质网应激(ERS)与特发性肺纤维化(IPF)之间的分子联系仍不清楚。我们的研究旨在揭示IPF的核心机制和新的治疗靶点。通过分析基因表达综合数据库(GEO)中的基因表达谱,我们鉴定出1519个差异表达基因(DEG)和11个与ERS相关的基因(ERSRG)可作为IPF的诊断指标。使用加权基因共表达网络分析(WGCNA)和差异表达分析,确定了与IPF相关的关键基因。使用CIBERSORT评估免疫细胞浸润,同时进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析以探索生物学机制。在三个GEO数据集(GSE150910、GSE92592和GSE124685)中,受试者工作特征(ROC)曲线分析显示所有ERSRG的ROC曲线下面积(AUC)>0.7。使用连通图(CMap)数据库预测调节IPF特征的小分子。米哚妥林与蛋白质靶点的分子对接能量范围为-5.1643至-8.0154千卡/摩尔,而林西替尼的分子对接能量范围为-5.6031至-7.902千卡/摩尔。进行分子对接和动物实验以验证所鉴定化合物的治疗潜力,米哚妥林在小鼠博来霉素诱导的肺纤维化模型中显示出特定效果。体外实验表明,米哚妥林可能通过PI3K/Akt/mTOR途径减轻ERS,从而缓解肺纤维化。我们的研究结果突出了11个ERSRG作为IPF的预测指标,并证明了生物信息学在IPF治疗药物发现中的可行性。