Suppr超能文献

群体细菌模因算法及其在飞镖机器人中的应用。

Colonial bacterial memetic algorithm and its application on a darts playing robot.

作者信息

Kovács Szilárd, Budai Csaba, Botzheim János

机构信息

Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, Pest, 1117, Hungary.

Department of Mechatronics, Optics and Mechanical Engineering Informatics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, 4-6 Bertalan Lajos Street, Budapest, Pest, 1111, Hungary.

出版信息

Sci Rep. 2025 Mar 28;15(1):10757. doi: 10.1038/s41598-025-94245-1.

Abstract

In this paper, we present the Colonial Bacterial Memetic Algorithm (CBMA), an advanced evolutionary optimization approach for robotic applications. CBMA extends the Bacterial Memetic Algorithm by integrating Cultural Algorithms and co-evolutionary dynamics inspired by bacterial group behavior. This combination of natural and artificial evolutionary elements results in a robust algorithm capable of handling complex challenges in robotics, such as constraints, multiple objectives, large search spaces, and complex models, while delivering fast and accurate solutions. CBMA incorporates features like multi-level clustering, dynamic gene selection, hierarchical population clustering, and adaptive co-evolutionary mechanisms, enabling efficient management of task-specific parameters and optimizing solution quality while minimizing resource consumption. The algorithm's effectiveness is demonstrated through a real-world robotic application, achieving a 100% success rate in a robot arm's ball-throwing task usually with significantly fewer iterations and evaluations compared to other methods. CBMA was also evaluated using the CEC-2017 benchmark suite, where it consistently outperformed state-of-the-art optimization algorithms, achieving superior outcomes in 71% of high-dimensional cases and demonstrating up to an 80% reduction in required evaluations. These results highlight CBMA's efficiency, adaptability, and suitability for specialized tasks. Overall, CBMA exhibits exceptional performance in both real-world and benchmark evaluations, effectively balancing exploration and exploitation, and representing a significant advancement in adaptive evolutionary optimization for robotics.

摘要

在本文中,我们提出了殖民地细菌模因算法(CBMA),这是一种用于机器人应用的先进进化优化方法。CBMA通过整合文化算法和受细菌群体行为启发的协同进化动力学,对细菌模因算法进行了扩展。这种自然和人工进化元素的结合产生了一种强大的算法,能够应对机器人技术中的复杂挑战,如约束、多目标、大搜索空间和复杂模型,同时提供快速准确的解决方案。CBMA包含多级聚类、动态基因选择、分层种群聚类和自适应协同进化机制等功能,能够有效地管理特定任务的参数,优化解决方案质量,同时将资源消耗降至最低。通过一个实际的机器人应用展示了该算法的有效性,在机器人手臂投球任务中实现了100%的成功率,与其他方法相比,通常迭代次数和评估次数显著减少。还使用CEC-2017基准套件对CBMA进行了评估,在该套件中,它始终优于当前最先进的优化算法,在71%的高维案例中取得了优异的结果,所需评估次数最多减少了80%。这些结果突出了CBMA的效率、适应性和对特定任务的适用性。总体而言,CBMA在实际和基准评估中均表现出卓越的性能,有效地平衡了探索和利用,代表了机器人自适应进化优化的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f1/11953357/e72da20fb3d3/41598_2025_94245_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验