Suppr超能文献

一种用于在CT图像上对软骨样肿瘤进行分类的深度学习模型。

A deep learning model for classification of chondroid tumors on CT images.

作者信息

Gassert Felix G, Lang Daniel, Hesse Nina, Dürr Hans Roland, Klein Alexander, Kohll Luca, Hinterwimmer Florian, Luitjens Johanna, Weissinger Stefan, Peeken Jan C, Mogler Carolin, Knebel Carolin, Bartzsch Stefan, Gassert Florian T, Gersing Alexandra S

机构信息

Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.

Department of Radiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.

出版信息

BMC Cancer. 2025 Mar 28;25(1):561. doi: 10.1186/s12885-025-13951-1.

Abstract

BACKGROUND

Differentiating chondroid tumors is crucial for proper patient management. This study aimed to develop a deep learning model (DLM) for classifying enchondromas, atypical cartilaginous tumors (ACT), and high-grade chondrosarcomas using CT images.

METHODS

This retrospective study analyzed chondroid tumors from two independent cohorts. Tumors were segmented on CT images. A 2D convolutional neural network was developed and tested using split-sample and geographical validation. Four radiologists blinded to patient data and the DLM results with various levels of experience performed readings of the external test dataset for comparison. Performance metrics included accuracy, sensitivity, specificity, and area under the curve (AUC).

RESULTS

CTs from 344 patients (175 women; age = 50.3 ± 14.3 years;) with diagnosed enchondroma (n = 124), ACT (n = 92) or high-grade chondrosarcoma (n = 128) were analyzed. The DLM demonstrated comparable performance to radiologists (p > 0.05), achieving an AUC of 0.88 for distinguishing enchondromas from chondrosarcomas and 0.82 for differentiating enchondromas from ACTs. The DLM and musculoskeletal expert showed similar performance in differentiating ACTs from high-grade chondrosarcomas (p = 0.26), with an AUC of 0.64 and 0.56, respectively.

CONCLUSIONS

The DLM reliably differentiates benign from malignant cartilaginous tumors and is particularly useful for the differentiation between ACTs and Enchondromas, which is challenging based on CT images only. However, the differentiation between ACTs and high-grade chondrosarcomas remains difficult, reflecting known diagnostic challenges in radiology.

摘要

背景

区分软骨样肿瘤对于患者的恰当管理至关重要。本研究旨在开发一种深度学习模型(DLM),用于使用CT图像对内生软骨瘤、非典型软骨肿瘤(ACT)和高级别软骨肉瘤进行分类。

方法

这项回顾性研究分析了来自两个独立队列的软骨样肿瘤。在CT图像上对肿瘤进行分割。开发了一个二维卷积神经网络,并使用拆分样本和地理验证进行测试。四位对患者数据和DLM结果不知情且具有不同经验水平的放射科医生对外部测试数据集进行解读以作比较。性能指标包括准确性、敏感性、特异性和曲线下面积(AUC)。

结果

分析了344例确诊为内生软骨瘤(n = 124)、ACT(n = 92)或高级别软骨肉瘤(n = 128)患者(175名女性;年龄 = 50.3 ± 14.3岁)的CT图像。DLM表现出与放射科医生相当的性能(p > 0.05),区分内生软骨瘤和软骨肉瘤的AUC为0.88,区分内生软骨瘤和ACT的AUC为0.82。DLM和肌肉骨骼专家在区分ACT和高级别软骨肉瘤方面表现相似(p = 0.26),AUC分别为0.64和0.56。

结论

DLM能够可靠地区分良性和恶性软骨肿瘤,对于仅基于CT图像难以区分的ACT和内生软骨瘤的鉴别尤为有用。然而,ACT和高级别软骨肉瘤之间的鉴别仍然困难,这反映了放射学中已知的诊断挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5c3/11951610/9d3b788af76e/12885_2025_13951_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验