Suppr超能文献

基于BiO的混合导电复合材料具有卓越的氧交换动力学。

Superior Oxygen Exchange Kinetics on BiO-Based Mixed Conducting Composites.

作者信息

Emhjellen Linn Katinka, Thoréton Vincent, Xing Wen, Haugsrud Reidar

机构信息

Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway.

SINTEF Industry, Sustainable Energy Technology, Pb. 124 Blindern, NO-0314 Oslo, Norway.

出版信息

ACS Phys Chem Au. 2025 Feb 11;5(2):239-248. doi: 10.1021/acsphyschemau.4c00111. eCollection 2025 Mar 26.

Abstract

The kinetics of oxygen exchange dictate the rate of redox reactions, which is crucial for electrochemical-based sustainable technologies. In this study, we use isotope exchange pulse responses to elucidate the oxygen exchange mechanism for (BiTm)O (BTM)-(LaSr)MnO (LSM) composites. With an optimized composition and microstructure, these composites can achieve polarization resistances below 0.01 Ω·cm at 700 °C. Analysis of the oxygen exchange rate, , by splitting it into elementary processes using the serial two-step scheme, demonstrates that both the dissociative adsorption and incorporation of oxygen are accelerated in BTM-LSM compared to the parent phases. Dissociative adsorption of molecular oxygen is rate-limiting below 900 °C in the range 0.002-0.05 atm O and below 850 °C in 0.21 atm O. Cation interdiffusion or changes in the electronic structure at the interface between the two materials create an electrocatalytically active region spanning 1-40 nm around the BTM-LSM phase boundary. Oxygen exchange coefficients within this region were estimated to be 2-3 orders of magnitude higher compared to those of the entire composite surface. We propose two potential pathways for oxygen exchange in BTM-LSM, with calculated dependencies for each rate-determining step (). The dependency of reveals that molecular oxygen is involved in the .

摘要

氧交换动力学决定了氧化还原反应的速率,这对于基于电化学的可持续技术至关重要。在本研究中,我们使用同位素交换脉冲响应来阐明(BiTm)O(BTM)-(LaSr)MnO(LSM)复合材料的氧交换机制。通过优化的组成和微观结构,这些复合材料在700°C时可实现低于0.01Ω·cm的极化电阻。使用串联两步法将氧交换速率分解为基本过程进行分析,结果表明,与母体相相比,BTM-LSM中氧的解离吸附和掺入均得到加速。在0.002 - 0.05 atm O₂条件下,低于900°C时,分子氧的解离吸附是限速步骤;在0.21 atm O₂条件下,低于850°C时,分子氧的解离吸附是限速步骤。两种材料界面处的阳离子相互扩散或电子结构变化在BTM-LSM相界周围形成了一个1 - 40 nm的电催化活性区域。该区域内的氧交换系数估计比整个复合材料表面的氧交换系数高2 - 3个数量级。我们提出了BTM-LSM中氧交换的两条潜在途径,并计算了每个速率决定步骤()的 依赖性。 的依赖性表明分子氧参与了 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/11950862/bb8912922aea/pg4c00111_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验