Ryu Sun Young, Choi Joon Yul, Yoo Tae Keun
B&VIIT Eye Center, Seoul, South Korea.
Department of Biomedical Engineering, Yonsei University, Wonju, South Korea.
Med Biol Eng Comput. 2025 Mar 31. doi: 10.1007/s11517-025-03353-7.
Retinal artery occlusion (RAO) is a sight-threatening condition that requires prompt diagnosis to prevent irreversible vision loss. This study presents an innovative AI-driven approach for RAO detection from fundus images, marking the first application of deep learning for this purpose. Using a self-supervised learning (SSL) framework with SimCLR, our model addresses the challenge of limited labeled RAO data. The ResNet50 model pretrained with SimCLR demonstrated high diagnostic accuracy, achieving areas under the receiver operating characteristic curve (AUC) of 0.924 and 0.988 on two external validation datasets, highlighting its robustness and generalizability in RAO detection. To enhance transparency in clinical AI, we incorporated a multimodal interpretability approach using a ChatGPT-4-based AI chatbot. This chatbot, combined with Grad-CAM visualizations, provides detailed clinical explanations of the model's predictions, emphasizing key RAO features such as retinal whitening and cherry-red spots. This multimodal interpretability framework improves clinicians' understanding of the model's decision-making process, facilitating clinical adoption and trust. By automating RAO detection, this AI model serves as a valuable tool for the early identification of ocular and systemic vascular risks, enabling timely intervention. These findings highlight the potential of fundus imaging for RAO detection and broader cardiovascular risk assessment, advancing AI's role in predictive healthcare.
视网膜动脉阻塞(RAO)是一种威胁视力的疾病,需要及时诊断以防止不可逆转的视力丧失。本研究提出了一种创新的人工智能驱动方法,用于从眼底图像中检测RAO,这标志着深度学习首次用于此目的。使用带有SimCLR的自监督学习(SSL)框架,我们的模型解决了RAO标记数据有限的挑战。用SimCLR预训练的ResNet50模型表现出较高的诊断准确性,在两个外部验证数据集上的受试者工作特征曲线下面积(AUC)分别达到0.924和0.988,突出了其在RAO检测中的稳健性和通用性。为了提高临床人工智能的透明度,我们采用了一种基于ChatGPT-4的人工智能聊天机器人的多模态可解释性方法。这个聊天机器人与Grad-CAM可视化相结合,提供了模型预测的详细临床解释,强调了视网膜变白和樱桃红斑等关键RAO特征。这种多模态可解释性框架提高了临床医生对模型决策过程的理解,促进了临床应用和信任。通过自动化RAO检测,这个人工智能模型成为早期识别眼部和全身血管风险的有价值工具,能够及时进行干预。这些发现突出了眼底成像在RAO检测和更广泛的心血管风险评估中的潜力,推进了人工智能在预测性医疗保健中的作用。