Suppr超能文献

用于单细胞基因组学的因果机器学习。

Causal machine learning for single-cell genomics.

作者信息

Tejada-Lapuerta Alejandro, Bertin Paul, Bauer Stefan, Aliee Hananeh, Bengio Yoshua, Theis Fabian J

机构信息

Institute of Computational Biology, Helmholtz Munich, Munich, Germany.

School of Computing, Information and Technology, Technical University of Munich, Munich, Germany.

出版信息

Nat Genet. 2025 Apr;57(4):797-808. doi: 10.1038/s41588-025-02124-2. Epub 2025 Mar 31.

Abstract

Advances in single-cell '-omics' allow unprecedented insights into the transcriptional profiles of individual cells and, when combined with large-scale perturbation screens, enable measuring of the effect of targeted perturbations on the whole transcriptome. These advances provide an opportunity to better understand the causative role of genes in complex biological processes. In this Perspective, we delineate the application of causal machine learning to single-cell genomics and its associated challenges. We first present the causal model that is most commonly applied to single-cell biology and then identify and discuss potential approaches to three open problems: the lack of generalization of models to novel experimental conditions, the complexity of interpreting learned models, and the difficulty of learning cell dynamics.

摘要

单细胞“组学”技术的进步使人们能够以前所未有的方式洞察单个细胞的转录谱,并且当与大规模扰动筛选相结合时,能够测量靶向扰动对整个转录组的影响。这些进展为更好地理解基因在复杂生物学过程中的因果作用提供了机会。在这篇观点文章中,我们阐述了因果机器学习在单细胞基因组学中的应用及其相关挑战。我们首先介绍最常用于单细胞生物学的因果模型,然后识别并讨论针对三个开放性问题的潜在方法:模型对新实验条件缺乏通用性、解释所学模型的复杂性以及学习细胞动态的困难。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验