Mila, the Quebec AI Institute, Montreal, QC, Canada.
Relation Therapeutics, London, UK.
Cell Rep Methods. 2023 Oct 23;3(10):100599. doi: 10.1016/j.crmeth.2023.100599. Epub 2023 Oct 4.
For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state-of-the-art results in silico for the prediction of synergy scores. However, databases of drug combinations are biased toward synergistic agents and results do not generalize out of distribution. During 5 rounds of experimentation, we employ sequential model optimization with a deep learning model to select drug combinations increasingly enriched for synergism and active against a cancer cell line-evaluating only ∼5% of the total search space. Moreover, we find that learned drug embeddings (using structural information) begin to reflect biological mechanisms. In silico benchmarking suggests search queries are ∼5-10× enriched for highly synergistic drug combinations by using sequential rounds of evaluation when compared with random selection or ∼3× when using a pretrained model.
对于大型小分子文库,当考虑一系列疾病模型、测定条件和剂量范围时,全面的组合化学筛选变得不可行。深度学习模型在协同作用评分的预测方面在计算上取得了最先进的结果。然而,药物组合数据库偏向于协同作用的药物,并且结果不能推广到分布之外。在 5 轮实验中,我们使用深度学习模型进行顺序模型优化,以选择协同作用逐渐富集的药物组合,并针对癌细胞系进行评估,仅评估总搜索空间的约 5%。此外,我们发现学习到的药物嵌入(使用结构信息)开始反映生物学机制。与随机选择相比,通过使用顺序评估轮次,计算基准测试表明搜索查询高度协同作用的药物组合富集了约 5-10 倍,而使用预训练模型则富集了约 3 倍。