Ng Lynnette Hui Xian, Carley Kathleen M
Center for Computational Analysis of Social and Organizational Systems, Societal and Software Systems Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Sci Rep. 2025 Mar 31;15(1):10973. doi: 10.1038/s41598-025-96372-1.
Chatter on social media about global events comes from 20% bots and 80% humans. The chatter by bots and humans is consistently different: bots tend to use linguistic cues that can be easily automated (e.g., increased hashtags, and positive terms) while humans use cues that require dialogue understanding (e.g. replying to post threads). Bots use words in categories that match the identities they choose to present, while humans may send messages that are not obviously related to the identities they present. Bots and humans differ in their communication structure: sampled bots have a star interaction structure, while sampled humans have a hierarchical structure. These conclusions are based on a large-scale analysis of social media tweets across ~ 200 million users across 7 events. Social media bots took the world by storm when social-cybersecurity researchers realized that social media users not only consisted of humans, but also of artificial agents called bots. These bots wreck havoc online by spreading disinformation and manipulating narratives. However, most research on bots are based on special-purposed definitions, mostly predicated on the event studied. In this article, we first begin by asking, "What is a bot?", and we study the underlying principles of how bots are different from humans. We develop a first-principle definition of a social media bot. This definition refines existing academic and industry definitions: "A Social Media Bot is An automated account that carries out a series of mechanics on social media platforms, for content creation, distribution and collection, and/or for relationship formation and dissolutions." With this definition as a premise, we systematically compare the characteristics between bots and humans across global events, and reflect on how the software-programmed bot is an Artificial Intelligent algorithm, and its potential for evolution as technology advances. Based on our results, we provide recommendations for the use of bots and for the regulation of bots. Finally, we discuss three open challenges and future directions of the study of bots: Detect, to systematically identify these automated and potentially evolving bots; Differentiate, to evaluate the goodness of the bot in terms of their content postings and relationship interactions; Disrupt, to moderate the impact of malicious bots, while not unsettling human conversations.
社交媒体上关于全球事件的聊天内容中,20% 来自机器人,80% 来自人类。机器人和人类的聊天内容始终存在差异:机器人倾向于使用易于自动化的语言线索(例如,增加话题标签和使用积极词汇),而人类则使用需要对话理解的线索(例如回复帖子线程)。机器人使用的词汇类别与它们选择呈现的身份相匹配,而人类可能发送与他们所呈现的身份并无明显关联的信息。机器人和人类的交流结构也有所不同:抽样的机器人具有星型交互结构,而抽样的人类具有层次结构。这些结论基于对 7 个事件中约 2 亿用户的社交媒体推文进行的大规模分析。当社会网络安全研究人员意识到社交媒体用户不仅包括人类,还包括被称为机器人的人工代理时,社交媒体机器人便迅速风靡全球。这些机器人通过传播虚假信息和操纵舆论在网上造成严重破坏。然而,大多数关于机器人的研究都基于特定目的的定义,主要取决于所研究的事件。在本文中,我们首先提出 “什么是机器人?” 这个问题,并研究机器人与人类不同的潜在原理。我们给出了社交媒体机器人的第一性原理定义。这个定义完善了现有的学术和行业定义:“社交媒体机器人是一个自动化账户,它在社交媒体平台上执行一系列操作,用于内容创建、分发和收集,和/或用于关系的建立和解除。” 以这个定义为前提,我们系统地比较了全球事件中机器人和人类的特征,并思考软件编程的机器人作为一种人工智能算法,以及随着技术进步其进化的潜力。基于我们的研究结果,我们为机器人的使用和监管提供了建议。最后,我们讨论了机器人研究的三个开放性挑战和未来方向:检测,即系统地识别这些自动化且可能不断进化的机器人;区分,即根据机器人的内容发布和关系互动来评估其优劣;干扰,即减轻恶意机器人的影响,同时不扰乱人类对话。