Wattanachai Pitiwat, Kochchapong Kittiphat, Chaiwithee Sattaya, Keereemasthong Thaloengsak, Pimraksa Kedsarin
Department of Civil Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
Science and Technology Park (STeP), Chiang Mai University, Chiang Mai, 50100, Thailand.
Sci Rep. 2025 Apr 1;15(1):11098. doi: 10.1038/s41598-025-95482-0.
Ordinary Portland Cement (OPC) is a major contributor to global CO emissions due to the energy-intensive calcination process required for its production, highlighting the critical need for alternative binder systems that can reduce or replace cement while still meeting the practical applications. The development of this alternative binder opens opportunities for researchers to design solutions for various purposes, not only reducing or replacing cement but also offering additional benefits, such as CO₂ absorption. This research explores the synergistic of a sustainable non-OPC binder system incorporating high volumes of fly ash, limestone powder, gibbsite powder, and biomass ash (BA), presenting a sustainable local alternative for construction materials. By evaluating workability, compressive strength, and CO uptake. The results show that low BA content enhances flowability, while higher BA content improves compressive strength (up to 29 MPa at 56 days) by facilitating pozzolanic reactions and the formation of carboaluminate phases. Additionally, the high alkalinity of BA enhanced CO sequestration, with the highest absorption (2.7%) observed at 15% BA content. XRD and DTA analysis confirm active pozzolanic reactions, calcium aluminate formations, and the influence of carbonation reactions. These findings highlight the potential of this non-OPC binder for practical applications in environmentally friendly construction, offering reduced reliance on cement while effectively sequestering CO.
普通硅酸盐水泥(OPC)由于其生产所需的能源密集型煅烧过程,是全球碳排放的主要贡献者,这凸显了对替代粘结剂系统的迫切需求,这种系统既能减少或替代水泥,又能满足实际应用。这种替代粘结剂的开发为研究人员提供了机会,以设计适用于各种目的的解决方案,不仅可以减少或替代水泥,还能带来额外的好处,如二氧化碳吸收。本研究探讨了一种可持续的非OPC粘结剂系统的协同作用,该系统包含大量粉煤灰、石灰石粉、三水铝石粉和生物质灰(BA),为建筑材料提供了一种可持续的本地替代品。通过评估工作性、抗压强度和二氧化碳吸收量。结果表明,低BA含量可提高流动性,而较高的BA含量通过促进火山灰反应和碳铝酸盐相的形成来提高抗压强度(56天时高达29MPa)。此外,BA的高碱度增强了二氧化碳的封存,在BA含量为15%时观察到最高吸收量(2.7%)。XRD和DTA分析证实了活性火山灰反应、铝酸钙的形成以及碳酸化反应的影响。这些发现突出了这种非OPC粘结剂在环保建筑实际应用中的潜力,在有效封存二氧化碳的同时减少了对水泥的依赖。