Suppr超能文献

健康的社会决定因素对ACDF术后90天再入院和医疗利用的预测价值:XGBoost、随机森林、弹性网络、支持向量回归和深度学习的比较分析

Predictive Value of Social Determinants of Health on 90-Day Readmission and Health Utilization Following ACDF: A Comparative Analysis of XGBoost, Random Forest, Elastic-Net, SVR, and Deep Learning.

作者信息

Reyes Samuel G, Bajaj Pranav M, Herrera Daniel E, Kurapaty Steven S, Chen Austin, Khazanchi Rushmin, Bajaj Anitesh, Hsu Wellington K, Patel Alpesh A, Divi Srikanth N

机构信息

Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

出版信息

Global Spine J. 2025 Apr 2:21925682251332556. doi: 10.1177/21925682251332556.

Abstract

Study DesignRetrospective cohort.ObjectiveDespite numerous studies highlighting patient comorbidities and surgical factors in postoperative success, the role of social determinants of health (SDH) in anterior cervical discectomy and fusion (ACDF) outcomes remains unexplored. This study evaluates the predictive impact of SDH on 90-day readmission and health utilization (HU) in ACDF patients using machine learning (ML).MethodsWe analyzed 3127 ACDF patients (2003-2023) from a multisite academic center, incorporating over 35 clinical and demographic variables. SDH characteristics were assessed using the Social Vulnerability Index. Primary outcomes included 90-day readmission and postoperative HU. ML models were developed and validated by the area under the curve (AUC) for readmission and mean absolute error (MAE) for HU. Feature importance analysis identified key predictors.ResultsBalanced Random Forest (AUC = 0.75) best predicted 90-day readmission, with length of stay, Elixhauser score, and Medicare status as top predictors. Among SDH factors, minority status & language, household composition & disability, socioeconomic status, and housing type & transportation were influential. Support Vector Regression (MAE = 1.96) best predicted HU, with perioperative duration, socioeconomic status, and minority status & language as key predictors.ConclusionsFindings highlight SDH's role in ACDF outcomes, suggesting the value of stratifying for interventions such as targeted resource allocation, language-concordant care, and tailored follow-up. While reliance on a single healthcare system and proxy SDH measures are limitations, this is the first study to apply ML to assess SDH in ACDF patients. Further validation with direct patient-reported SDH data is needed to refine predictive models.

摘要

研究设计

回顾性队列研究。

目的

尽管众多研究强调了患者合并症和手术因素对术后成功的影响,但健康的社会决定因素(SDH)在前路颈椎间盘切除融合术(ACDF)结果中的作用仍未得到探索。本研究使用机器学习(ML)评估SDH对ACDF患者90天再入院率和医疗利用(HU)的预测影响。

方法

我们分析了来自多中心学术中心的3127例ACDF患者(2003 - 2023年),纳入了35个以上的临床和人口统计学变量。使用社会脆弱性指数评估SDH特征。主要结局包括90天再入院率和术后HU。通过再入院曲线下面积(AUC)和HU的平均绝对误差(MAE)开发并验证ML模型。特征重要性分析确定了关键预测因素。

结果

平衡随机森林(AUC = 0.75)对90天再入院率的预测效果最佳,住院时间、埃利克斯豪泽评分和医疗保险状态是主要预测因素。在SDH因素中,少数族裔身份和语言、家庭构成和残疾、社会经济地位以及住房类型和交通有影响。支持向量回归(MAE = 1.96)对HU的预测效果最佳,围手术期持续时间、社会经济地位以及少数族裔身份和语言是关键预测因素。

结论

研究结果突出了SDH在ACDF结局中的作用,表明了在诸如针对性资源分配、语言匹配护理和定制化随访等干预措施中进行分层的价值。虽然依赖单一医疗系统和代理SDH指标存在局限性,但这是第一项应用ML评估ACDF患者SDH的研究。需要使用直接的患者报告SDH数据进行进一步验证,以完善预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9e/11966637/a05495f52ddc/10.1177_21925682251332556-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验