Suppr超能文献

基于生成式人工智能的自由呼吸、高加速、单拍、多层面心脏电影磁共振成像

Free-breathing, Highly Accelerated, Single-beat, Multisection Cardiac Cine MRI with Generative Artificial Intelligence.

作者信息

Ghanbari Fahime, Morales Manuel A, Street Jordan A, Rodriguez Jennifer, Johnson Scott, Pierce Patrick, Carty Adele, Ngo Long H, Hoeger Christopher W, Tsao Connie W, Manning Warren J, Nezafat Reza

机构信息

Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215.

Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass.

出版信息

Radiol Cardiothorac Imaging. 2025 Apr;7(2):e240272. doi: 10.1148/ryct.240272.

Abstract

Purpose To develop and evaluate a free-breathing, highly accelerated, multisection, single-beat cine sequence for cardiac MRI. Materials and Methods This prospective study, conducted from July 2022 to December 2023, included participants with various cardiac conditions as well as healthy participants who were imaged using a 3-T MRI system. A single-beat sequence was implemented, collecting data for each section in one heartbeat. Images were acquired with an in-plane spatiotemporal resolution of 1.9 × 1.9 mm and 37 msec and reconstructed using resolution enhancement generative adversarial inline neural network (REGAIN), a deep learning model. Multibreath-hold k-space-segmented (4.2-fold acceleration) and free-breathing single-beat (14.8-fold acceleration) cine images were collected, both reconstructed with REGAIN. Left ventricular (LV) and right ventricular (RV) parameters between the two methods were evaluated with linear regression, Bland-Altman analysis, and Pearson correlation. Three expert cardiologists independently scored diagnostic and image quality. Scan and rescan reproducibility was evaluated in a subset of participants 1 year apart using the intraclass correlation coefficient (ICC). Results This study included 136 participants (mean age [SD], 54 years ± 15; 69 female, 67 male), 40 healthy and 96 with cardiac conditions. k-Space-segmented and single-beat scan times were 2.6 minutes ± 0.8 and 0.5 minute ± 0.1, respectively. Strong correlations ( < .001) were observed between k-space-segmented and single-beat cine parameters in both LV ( = 0.97-0.99) and RV ( = 0.89-0.98). Scan and rescan reproducibility of single-beat cine was excellent (ICC, 0.97-1.0). Agreement among readers was high, with 125 of 136 (92%) images consistently assessed as diagnostic and 133 of 136 (98%) consistently rated as having good image quality by all readers. Conclusion Free-breathing 30-second single-beat cardiac cine MRI yielded accurate biventricular measurements, reduced scan time, and maintained high diagnostic and image quality compared with conventional multibreath-hold k-space-segmented cine images. MR-Imaging, Cardiac, Heart, Imaging Sequences, Comparative Studies, Technology Assessment © RSNA, 2025.

摘要

目的 开发并评估一种用于心脏磁共振成像(MRI)的自由呼吸、高度加速、多层面、单心跳电影序列。材料与方法 这项前瞻性研究于2022年7月至2023年12月进行,纳入了患有各种心脏疾病的参与者以及使用3-T MRI系统进行成像的健康参与者。实施了一种单心跳序列,在一次心跳中采集每个层面的数据。图像采集的平面时空分辨率为1.9×1.9 mm和37毫秒,并使用分辨率增强生成对抗内联神经网络(REGAIN,一种深度学习模型)进行重建。采集了多屏气k空间分段(4.2倍加速)和自由呼吸单心跳(14.8倍加速)电影图像,两者均用REGAIN重建。通过线性回归、布兰德-奥特曼分析和皮尔逊相关性评估两种方法之间的左心室(LV)和右心室(RV)参数。三位心脏科专家独立对诊断和图像质量进行评分。在相隔1年的一部分参与者中使用组内相关系数(ICC)评估扫描和重复扫描的可重复性。结果 本研究包括136名参与者(平均年龄[标准差],54岁±15岁;女性69名,男性67名),其中40名健康,96名患有心脏疾病。k空间分段和单心跳扫描时间分别为2.6分钟±0.8分钟和0.5分钟±0.1分钟。在LV(r = 0.97 - 0.99)和RV(r = 0.89 - 0.98)中,k空间分段和单心跳电影参数之间均观察到强相关性(P <.001)。单心跳电影的扫描和重复扫描可重复性极佳(ICC,0.97 - 1.0)。读者之间的一致性很高,136幅图像中有125幅(92%)被一致评估为可用于诊断,136幅图像中有133幅(98%)被所有读者一致评为具有良好的图像质量。结论 与传统的多屏气k空间分段电影图像相比,自由呼吸30秒单心跳心脏电影MRI能得出准确的双心室测量结果,减少扫描时间,并保持较高的诊断和图像质量。 磁共振成像、心脏、心脏、成像序列、对比研究、技术评估 © RSNA,2025

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验