Suppr超能文献

利用深度学习技术进行加速心脏磁共振成像,用于儿童容积评估。

Accelerated cardiac magnetic resonance imaging using deep learning for volumetric assessment in children.

机构信息

Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland.

Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.

出版信息

Pediatr Radiol. 2024 Sep;54(10):1674-1685. doi: 10.1007/s00247-024-05978-6. Epub 2024 Jul 17.

Abstract

BACKGROUND

Ventricular volumetry using a short-axis stack of two-dimensional (D) cine balanced steady-state free precession (bSSFP) sequences is crucial in any cardiac magnetic resonance imaging (MRI) examination. This task becomes particularly challenging in children due to multiple breath-holds.

OBJECTIVE

To assess the diagnostic performance of accelerated 3-RR cine MRI sequences using deep learning reconstruction compared with standard 2-D cine bSSFP sequences.

MATERIAL AND METHODS

Twenty-nine consecutive patients (mean age 11 ± 5, median 12, range 1-17 years) undergoing cardiac MRI were scanned with a conventional segmented 2-D cine and a deep learning accelerated cine (three heartbeats) acquisition on a 1.5-tesla scanner. Short-axis volumetrics were performed (semi-)automatically in both datasets retrospectively by two experienced readers who visually assessed image quality employing a 4-point grading scale. Scan times and image quality were compared using the Wilcoxon rank-sum test. Volumetrics were assessed with linear regression and Bland-Altman analyses, and measurement agreement with intraclass correlation coefficient (ICC).

RESULTS

Mean acquisition time was significantly reduced with the 3-RR deep learning cine compared to the standard cine sequence (45.5 ± 13.8 s vs. 218.3 ± 44.8 s; P < 0.001). No significant differences in biventricular volumetrics were found. Left ventricular (LV) mass was increased in the deep learning cine compared with the standard cine sequence (71.4 ± 33.1 g vs. 69.9 ± 32.5 g; P < 0.05). All volumetric measurements had an excellent agreement with ICC > 0.9 except for ejection fraction (EF) (LVEF 0.81, RVEF 0.73). The image quality of deep learning cine images was decreased for end-diastolic and end-systolic contours, papillary muscles, and valve depiction (2.9 ± 0.5 vs. 3.5 ± 0.4; P < 0.05).

CONCLUSION

Deep learning cine volumetrics did not differ significantly from standard cine results except for LV mass, which was slightly overestimated with deep learning cine. Deep learning cine sequences result in a significant reduction in scan time with only slightly lower image quality.

摘要

背景

在任何心脏磁共振成像(MRI)检查中,使用二维(D)电影平衡稳态自由进动(bSSFP)序列的短轴堆栈进行心室容积测量至关重要。由于需要多次屏气,这在儿童中变得极具挑战性。

目的

评估使用深度学习重建的加速 3-RR 电影 MRI 序列与标准 2-D 电影 bSSFP 序列相比的诊断性能。

材料与方法

对 29 例连续患者(平均年龄 11±5 岁,中位数 12 岁,范围 1-17 岁)进行心脏 MRI 扫描,使用常规分段 2-D 电影和深度学习加速电影(三个心跳)采集在 1.5 特斯拉扫描仪上。由两位有经验的读者对两个数据集进行回顾性半自动短轴容积测量,他们使用 4 分制评分量表评估图像质量。使用 Wilcoxon 秩和检验比较扫描时间和图像质量。使用线性回归和 Bland-Altman 分析评估容积测量值,并使用组内相关系数(ICC)评估测量一致性。

结果

与标准电影序列相比,使用 3-RR 深度学习电影采集时,平均采集时间明显缩短(45.5±13.8 秒与 218.3±44.8 秒;P<0.001)。双心室容积测量值无显著差异。与标准电影序列相比,深度学习电影采集的左心室(LV)质量增加(71.4±33.1 克与 69.9±32.5 克;P<0.05)。除射血分数(EF)(LVEF 0.81,RVEF 0.73)外,所有容积测量值的 ICC 值均>0.9,具有极好的一致性。深度学习电影图像的图像质量在舒张末期和收缩末期轮廓、乳头肌和瓣膜描绘方面降低(2.9±0.5 与 3.5±0.4;P<0.05)。

结论

深度学习电影容积测量值与标准电影结果无显著差异,除 LV 质量略有高估外,LV 质量略有高估。深度学习电影序列可显著缩短扫描时间,而图像质量仅略有下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/196f/11377620/5974b2551bd9/247_2024_5978_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验