Suppr超能文献

一项采用生命历程方法对大巴黎地区乳腺癌与移民情况进行调查的研究:SENOVIE研究方案。

A Life course approach to investigate breast cancer and migration in the greater Paris area: the SENOVIE study protocol.

作者信息

Coulibaly Karna, Schantz Clémence, Teixeira Luis, Degrées du Loû Annabel, Des Guetz Gaëtan, Hocini Hamid, Zelek Laurent, Larmarange Joseph, Gosselin Anne

机构信息

Institut National d'Études Démographiques (INED), Aubervilliers, France

Ceped (UMR 196), Université Paris Cité, Institut de Recherche pour le Développement, Université Sorbonne Paris Nord, Inserm, Paris, France.

出版信息

BMJ Open. 2025 Apr 2;15(4):e095759. doi: 10.1136/bmjopen-2024-095759.

Abstract

INTRODUCTION

Breast cancer is a global public health challenge. It is the most commonly diagnosed cancer and the leading cause of cancer-related death in women. Several inequalities remain among women facing this disease, depending on their country of birth and their sociodemographic characteristics. The SENOVIE study (Therapeutic mobility and breast cancer) aims to understand the life trajectories of women born in France and in sub-Saharan Africa treated for breast cancer in four hospitals in the greater Paris area.

METHODS AND ANALYSIS

The SENOVIE study is a mixed methods study, combining a quantitative and a qualitative approach. A quantitative retrospective life-event survey is conducted in four hospital centres in the greater Paris area, France, to (1) understand how breast cancer (diagnosis, treatment and possibly reconstruction) impacts the life trajectories of women in many spheres (migration, family life, professional life, financial situation, etc); (2) study the access to healthcare by women living with breast cancer and their determinants; and (3) examine how gender relations may shape breast cancer experience. Women born in France and women born in sub-Saharan Africa are recruited: 1000 women, including 500 per group. In the standardised, face-to-face questionnaire, each dimension of interest is collected year by year from birth until the time of the survey. Clinical and laboratory information is documented with a short medical questionnaire filled out by the medical teams. The qualitative survey is conducted specifically with women born in sub-Saharan Africa who came to France for treatment to better understand their trajectories and the specific obstacles they faced. To analyse the quantitative data collected, descriptive analyses will be used to visualise trajectories (sequence analysis), along with longitudinal analysis methods (survival models and duration models).

ETHICS AND DISSEMINATION

The study is conducted in accordance with the Declaration of Helsinki. The French Data Protection Authority (Commission Nationale de l'Informatique et des Libertés, declaration number 2231238) and the Committee for Persons' Protection East I (Comité de Protection des Personnes Est I, national number 2023-A01311-44) approved it. We will disseminate the findings through scientific publications, policy briefs, conferences and workshops.

TRIAL REGISTRATION NUMBER

The SENOVIE France study is registered on Clinicaltrial.gov (NCT06503393; registration date: 7 September 2024; https://clinicaltrials.gov/study/NCT06503393).

摘要

引言

乳腺癌是一项全球性的公共卫生挑战。它是最常被诊断出的癌症,也是女性癌症相关死亡的主要原因。在面临这种疾病的女性中,根据其出生国家和社会人口特征,仍然存在一些不平等现象。SENOVIE研究(治疗流动性与乳腺癌)旨在了解在大巴黎地区四家医院接受乳腺癌治疗的法国出生和撒哈拉以南非洲出生的女性的生活轨迹。

方法与分析

SENOVIE研究是一项混合方法研究,结合了定量和定性方法。在法国大巴黎地区的四个医院中心进行了一项定量回顾性生活事件调查,以(1)了解乳腺癌(诊断、治疗以及可能的重建)如何在许多领域(移民、家庭生活、职业生活、财务状况等)影响女性的生活轨迹;(2)研究乳腺癌患者获得医疗保健的情况及其决定因素;(3)研究性别关系如何塑造乳腺癌经历。招募法国出生的女性和撒哈拉以南非洲出生的女性:共1000名女性,每组500名。在标准化的面对面问卷中,从出生到调查时逐年收集每个感兴趣的维度。临床和实验室信息通过医疗团队填写的简短医疗问卷进行记录。定性调查专门针对前往法国接受治疗的撒哈拉以南非洲出生的女性进行,以更好地了解她们的轨迹以及她们面临的具体障碍。为了分析收集到的定量数据,将使用描述性分析来可视化轨迹(序列分析),以及纵向分析方法(生存模型和持续时间模型)。

伦理与传播

该研究按照《赫尔辛基宣言》进行。法国数据保护局(国家信息与自由委员会,申报编号2231238)和东部第一地区人员保护委员会(人员保护委员会东部第一地区,国家编号2023 - A01311 - 44)批准了该研究。我们将通过科学出版物、政策简报、会议和研讨会传播研究结果。

试验注册号

SENOVIE法国研究已在Clinicaltrial.gov上注册(NCT06503393;注册日期:2024年9月7日;https://clinicaltrials.gov/study/NCT06503393)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a103/11966954/4a425be809af/bmjopen-15-4-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验