Suppr超能文献

非医疗系统干预措施与新冠疫情每日病例数:一项多层次时间序列分析

Non-healthcare system interventions and COVID-19 daily cases: a multilevel time series analysis.

作者信息

Ma Hao, Lei Lei, Liu Aonan, Yang Yanfang

机构信息

Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, China.

Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, China.

出版信息

BMC Public Health. 2025 Apr 3;25(1):1251. doi: 10.1186/s12889-025-22389-w.

Abstract

BACKGROUND

The global COVID-19 pandemic has significantly impacted public health and socio-economic development worldwide. This study aims to investigate the effects of non-healthcare system interventions on the daily new cases of COVID-19 from January 2020 to October 2022.

METHODS

With the aid of multilevel approach, we identified income group, region and country as stratification factors that affect the number of COVID-19 daily new cases. Data on COVID-19 cases collected by Johns Hopkins University were used, and policy implementation details were recorded through the Oxford COVID-19 Government Response Tracker dataset. To analyze the effects of national, regional, and income group factors on the number of daily new COVID-19 cases, we implemented three multilevel sequential mixed-effects models and applied restricted maximum likelihood to estimate the variance of random effects.

RESULTS

Our results indicate a correlation between income group and the rise in intercepts of random effects in the multilevel sequential mixed-effects models. High-income countries recorded the highest intercept at 713.26, while low-income countries showed the lowest at -313.79. Under the influence of policies, the implementation of "Canceling public events" and "International travel restrictions" has been shown to significantly reduce the daily number of new COVID-19 cases. In contrast, "Restrictions on gatherings" appear to have the opposite effect, potentially leading to an increase in daily new COVID-19 cases.

CONCLUSIONS

In designing epidemic control policies, due consideration should be given to factors such as income group, as well as medical, demographic, and social differences among nations influenced by economic factors. In policy-making, policymakers should pay greater attention to policy implementation and people's responses, in order to maximize the effectiveness and adherence of such policies.

摘要

背景

全球新冠疫情对全球公共卫生和社会经济发展产生了重大影响。本研究旨在调查2020年1月至2022年10月非医疗系统干预措施对新冠每日新增病例的影响。

方法

借助多层次方法,我们将收入群体、地区和国家确定为影响新冠每日新增病例数的分层因素。使用了约翰·霍普金斯大学收集的新冠病例数据,并通过牛津新冠疫情政府应对追踪数据集记录政策实施细节。为了分析国家、地区和收入群体因素对新冠每日新增病例数的影响,我们实施了三个多层次顺序混合效应模型,并应用限制最大似然法估计随机效应的方差。

结果

我们的结果表明,收入群体与多层次顺序混合效应模型中随机效应截距的上升之间存在相关性。高收入国家的截距最高,为713.26,而低收入国家的截距最低,为-313.79。在政策影响下,“取消公共活动”和“国际旅行限制”的实施已被证明能显著减少新冠每日新增病例数。相比之下,“集会限制”似乎产生了相反的效果,可能导致新冠每日新增病例数增加。

结论

在设计疫情防控政策时,应充分考虑收入群体等因素,以及受经济因素影响的国家间的医疗、人口和社会差异。在决策过程中,政策制定者应更加关注政策实施情况和民众反应,以最大限度地提高此类政策的有效性和依从性。

相似文献

1
Non-healthcare system interventions and COVID-19 daily cases: a multilevel time series analysis.
BMC Public Health. 2025 Apr 3;25(1):1251. doi: 10.1186/s12889-025-22389-w.
4
How does globalization affect COVID-19 responses?
Global Health. 2021 May 20;17(1):57. doi: 10.1186/s12992-021-00677-5.
5
Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
Cochrane Database Syst Rev. 2020 Oct 5;10:CD013717. doi: 10.1002/14651858.CD013717.
6
International travel-related control measures to contain the COVID-19 pandemic: a rapid review.
Cochrane Database Syst Rev. 2021 Mar 25;3(3):CD013717. doi: 10.1002/14651858.CD013717.pub2.
7
Government interventions and control policies to contain the first COVID-19 outbreak: An analysis of evidence.
Scand J Public Health. 2023 Jul;51(5):682-691. doi: 10.1177/14034948231156969. Epub 2023 Mar 8.
8
Effects of government policies on the spread of COVID-19 worldwide.
Sci Rep. 2021 Oct 14;11(1):20495. doi: 10.1038/s41598-021-99368-9.
9
Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis.
Lancet. 2022 Jun 25;399(10344):2351-2380. doi: 10.1016/S0140-6736(22)00484-6. Epub 2022 Apr 8.

本文引用的文献

1
What is the optimal country for minimum COVID-19 morbidity and mortality rates?
Environ Sci Pollut Res Int. 2023 May;30(21):59212-59232. doi: 10.1007/s11356-023-26632-y. Epub 2023 Mar 31.
2
Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate.
Int J Environ Res Public Health. 2022 Oct 11;19(20):12997. doi: 10.3390/ijerph192012997.
3
Quality of Life and Adherence to Healthcare Services During the COVID-19 Pandemic: A Cross-Sectional Analysis.
Patient Prefer Adherence. 2022 Sep 13;16:2533-2542. doi: 10.2147/PPA.S378245. eCollection 2022.
4
Infectious disease dynamics and restrictions on social gathering size.
Epidemics. 2022 Sep;40:100620. doi: 10.1016/j.epidem.2022.100620. Epub 2022 Aug 17.
5
Infectious Disease Underreporting Is Predicted by Country-Level Preparedness, Politics, and Pathogen Severity.
Health Secur. 2022 Jul-Aug;20(4):331-338. doi: 10.1089/hs.2021.0197. Epub 2022 Aug 4.
6
7
Correlation between Population Density and COVID-19 Cases during the Third Wave in Malaysia: Effect of the Delta Variant.
Int J Environ Res Public Health. 2022 Jun 17;19(12):7439. doi: 10.3390/ijerph19127439.
9
Association between temperature and COVID-19 transmission in 153 countries.
Environ Sci Pollut Res Int. 2022 Mar;29(11):16017-16027. doi: 10.1007/s11356-021-16666-5. Epub 2021 Oct 12.
10
Influence of Population Density for COVID-19 Spread in Malaysia: An Ecological Study.
Int J Environ Res Public Health. 2021 Sep 18;18(18):9866. doi: 10.3390/ijerph18189866.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验