Suppr超能文献

优化卢旺达马尔堡病毒病(MVD)的早期检测:利用预测性症状群来完善病例定义。

Refining early detection of Marburg Virus Disease (MVD) in Rwanda: Leveraging predictive symptom clusters to enhance case definitions.

作者信息

Nsekuye Olivier, Ntabana Frederick, Mucunguzi Hugues Valois, El-Khatib Ziad, Remera Eric, Makayotto Lyndah, Nkeshimana Menelas, Turatsinze David, Ntirenganya Frederic, Muhammed Semakula, Rukundo Athanase, Chirombo Brian, Muvunyi Richard, Mambo Muvunyi Claude, Nizeyimana Pacifique, Butera Yvan, Nsanzimana Sabin, Rwagasore Edson

机构信息

Rwanda Biomedical Centre, Kigali, Rwanda; Adventist University of Central Africa (AUCA), Kigali, Rwanda.

Rwanda Biomedical Centre, Kigali, Rwanda.

出版信息

Int J Infect Dis. 2025 Jul;156:107902. doi: 10.1016/j.ijid.2025.107902. Epub 2025 Apr 3.

Abstract

BACKGROUND

Marburg Virus Disease (MVD) poses a significant global health risk due to its high case fatality rates (24%-88%) and the diagnostic challenges posed by its nonspecific early symptoms, which overlap with other febrile illnesses like malaria. This study analyzed symptom patterns from the 2024 MVD outbreak in Rwanda to refine case definitions and enhance early detection.

METHODS

A retrospective analysis was conducted of 6613 suspected MVD cases (66 positive, 6547 negative) reported between September 27 and December 20, 2024. Symptom prevalence and predictive value were assessed using multiple logistic regression models with L1 and L2 regularization to identify the most predictive symptoms. Models were validated using 5-fold cross-validation, with performance assessed through ROC analysis and standard accuracy metrics.

RESULTS

Fever (78.8%), fatigue (63.6%), and headache (57.6%) were identified as the most common early symptoms, while hemorrhagic signs were rare (3.0%). The model achieved high accuracy (99.04%) and an area under the receiver operating characteristic curve of 0.824, identifying fever, fatigue, nausea/vomiting, joint pain, and sore throat as key predictors.

CONCLUSION

Early symptom clusters, especially constitutional and gastrointestinal signs outperformed hemorrhagic symptoms for MVD detection. Findings challenge current case definitions, emphasizing the need for revised public health messaging and healthcare worker training. Integrating symptom-based models into surveillance could enhance detection, especially in resource-limited settings.

摘要

背景

马尔堡病毒病(MVD)因其高病死率(24%-88%)以及非特异性早期症状带来的诊断挑战而对全球健康构成重大风险,这些早期症状与疟疾等其他发热性疾病的症状重叠。本研究分析了卢旺达2024年马尔堡病毒病疫情的症状模式,以完善病例定义并加强早期检测。

方法

对2024年9月27日至12月20日期间报告的6613例疑似马尔堡病毒病病例(66例阳性,6547例阴性)进行回顾性分析。使用具有L1和L2正则化的多重逻辑回归模型评估症状患病率和预测价值,以确定最具预测性的症状。模型通过5折交叉验证进行验证,通过ROC分析和标准准确性指标评估性能。

结果

发热(78.8%)、疲劳(63.6%)和头痛(57.6%)被确定为最常见的早期症状,而出血迹象很少见(3.0%)。该模型具有较高的准确性(99.04%),受试者工作特征曲线下面积为0.824,确定发热、疲劳、恶心/呕吐、关节疼痛和喉咙痛为关键预测因素。

结论

早期症状群,尤其是全身性和胃肠道症状,在马尔堡病毒病检测方面优于出血症状。研究结果对当前的病例定义提出了挑战,强调需要修订公共卫生信息和对医护人员进行培训。将基于症状的模型纳入监测可加强检测,尤其是在资源有限的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b668/12149021/8b414937dfe8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验