Bhattacharya Saurabh, Prusty Sashikanta, Pande Sanjay P, Gulhane Monali, Lavate Santosh H, Rakesh Nitin, Veerasamy Saravanan
School of Computer Science and Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India.
Department of Computer Science and Engineering, ITER-FET, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
Front Hum Neurosci. 2025 Mar 21;19:1552178. doi: 10.3389/fnhum.2025.1552178. eCollection 2025.
Combining many types of imaging data-especially structural MRI (sMRI) and functional MRI (fMRI)-may greatly assist in the diagnosis and treatment of brain disorders like Alzheimer's. Current approaches are less helpful for forecasting, however, as they do not always blend spatial and temporal patterns from different sources properly. This work presents a novel mixed deep learning (DL) method combining data from many sources using CNN, GRU, and attention techniques. This work introduces a novel hybrid deep learning method combining CNN, GRU, and a Dynamic Cross-Modality Attention Module to help more efficiently blend spatial and temporal brain data. Through working around issues with current multimodal fusion techniques, our approach increases the accuracy and readability of diagnoses.
Utilizing CNNs and models of temporal dynamics from fMRI connection measures utilizing GRUs, the proposed approach extracts spatial characteristics from sMRI. Strong multimodal integration is made possible by including an attention mechanism to give diagnostically important features top priority. Training and evaluation of the model took place using the Human Connectome Project (HCP) dataset including behavioral data, fMRI, and sMRI. Measures include accuracy, recall, precision and F1-score used to evaluate performance.
It was correct 96.79% of the time using the combined structure. Regarding the identification of brain disorders, the proposed model was more successful than existing ones.
These findings indicate that the hybrid strategy makes sense for using complimentary information from several kinds of photos. Attention to detail helped one choose which aspects to concentrate on, thereby enhancing the readability and diagnostic accuracy.
The proposed method offers a fresh benchmark for multimodal neuroimaging analysis and has great potential for use in real-world brain assessment and prediction. Researchers will investigate future applications of this technique to new picture kinds and clinical data.
结合多种类型的成像数据——尤其是结构磁共振成像(sMRI)和功能磁共振成像(fMRI)——可能会极大地有助于诊断和治疗诸如阿尔茨海默氏症等脑部疾病。然而,目前的方法在预测方面帮助较小,因为它们并不总是能恰当地融合来自不同来源的空间和时间模式。这项工作提出了一种新颖的混合深度学习(DL)方法,该方法使用卷积神经网络(CNN)、门控循环单元(GRU)和注意力技术来结合来自多个来源的数据。这项工作引入了一种新颖的混合深度学习方法,该方法结合了CNN、GRU和动态跨模态注意力模块,以更有效地融合空间和时间脑数据。通过解决当前多模态融合技术存在的问题,我们的方法提高了诊断的准确性和可读性。
利用CNN和基于GRU的fMRI连接测量的时间动态模型,所提出的方法从sMRI中提取空间特征。通过纳入注意力机制,将诊断上重要的特征置于首位,从而实现强大的多模态整合。使用包括行为数据、fMRI和sMRI的人类连接组计划(HCP)数据集对模型进行训练和评估。评估指标包括用于评估性能的准确率、召回率、精确率和F1分数。
使用组合结构时,该方法在96.79%的时间内是正确的。在脑部疾病的识别方面,所提出的模型比现有模型更成功。
这些发现表明,混合策略对于利用来自几种图像的互补信息是有意义的。对细节的关注有助于选择要关注的方面,从而提高可读性和诊断准确性。
所提出的方法为多模态神经成像分析提供了一个新的基准,在实际脑评估和预测中具有巨大的应用潜力。研究人员将研究该技术在新图像类型和临床数据方面的未来应用。