Suppr超能文献

用于阿尔茨海默病早期检测的基于机器学习的动态和静态结构-功能耦合

Dynamic and Static Structure-Function Coupling With Machine Learning for the Early Detection of Alzheimer's Disease.

作者信息

Wu Han, Lu Yinping, Wang Luyao, Wu Jinglong, Liu Ying, Zhang Zhilin

机构信息

School of Software, Northeastern University, Shenyang, China.

Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.

出版信息

Hum Brain Mapp. 2025 Apr 1;46(5):e70202. doi: 10.1002/hbm.70202.

Abstract

The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure-function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure-function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection.

摘要

阿尔茨海默病(AD)的进展涉及大脑结构和功能的复杂变化,这些变化由它们之间的相互作用驱动,使得结构 - 功能耦合(SFC)成为AD早期检测的一个有价值指标。静态SFC指的是整体结构 - 功能相互作用,而动态SFC指的是瞬态耦合变化。在本研究中,我们旨在评估将静态和动态SFC与机器学习(ML)相结合用于AD早期检测的潜力。我们分析了一个发现队列和一个外部验证队列,包括AD、轻度认知障碍(MCI)和健康对照(HC)组。然后,我们量化了AD进展不同阶段静态SFC和动态SFC之间的差异。使用弹性网络进行特征选择。使用高斯朴素贝叶斯(GNB)分类器来测试SFC对AD阶段进行分类的能力。我们还分析了SFC特征与早期AD生理生物标志物之间的相关性。静态SFC随着AD进展而增加,而动态SFC表现出更大的变异性和更低的稳定性。使用由弹性网络选择的SFC特征,GNB分类器在区分HC和MCI阶段(曲线下面积[AUC] = 91.1%)以及MCI和AD阶段(AUC = 89.03%)方面取得了高性能。在SFC特征与生理生物标志物之间发现了显著相关性。SFC特征与ML的联合使用对于AD阶段的准确分类具有很强的潜在价值,对于AD的早期检测具有重要的潜在价值。本研究表明,将静态和动态SFC与ML相结合为理解AD机制提供了一个新的视角,并有助于改善其早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9555/11974459/3da770bca8ac/HBM-46-e70202-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验