IEEE J Biomed Health Inform. 2024 Nov;28(11):6931-6943. doi: 10.1109/JBHI.2024.3427787. Epub 2024 Nov 6.
In response to increasing data privacy regulations, this work examines the use of federated learning for deep residual networks to diagnose cardiac abnormalities from electrocardiogram (ECG) data. This approach allows medical institutions to collaborate without exchanging raw patient data. We utilize the publicly available data from the PhysioNet/Computing in Cardiology Challenge 2021, featuring diverse ECG databases, to compare the classification performance of three federated learning methods against both central training with data sharing and isolated training scenarios. We show that federated learning outperforms ECG classifiers trained in isolation. In particular, our findings demonstrate that a globally trained model fine-tuned to specific local datasets surpasses non-collaborative approaches. This shows that models trained in federation learn general features that can be tailored to specific tasks. Furthermore, federated learning almost matches the performance of central training with data sharing on out-of-distribution data from non-participating institutions. These results highlight the ability of federated learning in developing models that generalize well across diverse patient data, without the need to share data among institutions, thus addressing data privacy concerns.
针对日益增长的数据隐私法规,本研究探讨了使用联邦学习进行深度残差网络,从心电图 (ECG) 数据诊断心脏异常。这种方法允许医疗机构在不交换原始患者数据的情况下进行协作。我们利用 PhysioNet/Computing in Cardiology Challenge 2021 提供的公开数据,其中包含各种 ECG 数据库,将三种联邦学习方法的分类性能与数据共享的集中训练和孤立训练场景进行比较。我们表明,联邦学习优于孤立训练的 ECG 分类器。特别是,我们的研究结果表明,全局训练的模型经过特定本地数据集的微调,优于非协作方法。这表明在联邦学习中训练的模型可以学习到一般特征,然后可以针对特定任务进行调整。此外,联邦学习在处理来自非参与机构的分布外数据时,几乎可以与具有数据共享的集中训练相匹配。这些结果突出了联邦学习在开发能够在不同患者数据中很好地推广的模型方面的能力,而无需在机构之间共享数据,从而解决了数据隐私问题。