Suppr超能文献

双通道超图卷积网络用于预测草药-疾病关联。

Dual-channel hypergraph convolutional network for predicting herb-disease associations.

机构信息

The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbae067.

Abstract

Herbs applicability in disease treatment has been verified through experiences over thousands of years. The understanding of herb-disease associations (HDAs) is yet far from complete due to the complicated mechanism inherent in multi-target and multi-component (MTMC) botanical therapeutics. Most of the existing prediction models fail to incorporate the MTMC mechanism. To overcome this problem, we propose a novel dual-channel hypergraph convolutional network, namely HGHDA, for HDA prediction. Technically, HGHDA first adopts an autoencoder to project components and target protein onto a low-dimensional latent space so as to obtain their embeddings by preserving similarity characteristics in their original feature spaces. To model the high-order relations between herbs and their components, we design a channel in HGHDA to encode a hypergraph that describes the high-order patterns of herb-component relations via hypergraph convolution. The other channel in HGHDA is also established in the same way to model the high-order relations between diseases and target proteins. The embeddings of drugs and diseases are then aggregated through our dual-channel network to obtain the prediction results with a scoring function. To evaluate the performance of HGHDA, a series of extensive experiments have been conducted on two benchmark datasets, and the results demonstrate the superiority of HGHDA over the state-of-the-art algorithms proposed for HDA prediction. Besides, our case study on Chuan Xiong and Astragalus membranaceus is a strong indicator to verify the effectiveness of HGHDA, as seven and eight out of the top 10 diseases predicted by HGHDA for Chuan-Xiong and Astragalus-membranaceus, respectively, have been reported in literature.

摘要

草药在疾病治疗中的应用已经通过数千年的经验得到了验证。由于多靶标、多成分(MTMC)植物疗法固有的复杂机制,对草药-疾病关联(HDA)的理解还远远不够。大多数现有的预测模型都未能纳入 MTMC 机制。为了解决这个问题,我们提出了一种新的双通道超图卷积网络,即 HGHDA,用于 HDA 预测。从技术上讲,HGHDA 首先采用自动编码器将成分和目标蛋白投射到低维潜在空间中,通过保留其原始特征空间中的相似特征来获得它们的嵌入。为了模拟草药与其成分之间的高阶关系,我们在 HGHDA 中设计了一个通道来编码一个超图,该超图通过超图卷积描述草药-成分关系的高阶模式。HGHDA 中的另一个通道也以相同的方式建立,用于模拟疾病和目标蛋白之间的高阶关系。然后通过我们的双通道网络聚合药物和疾病的嵌入,以获得具有评分函数的预测结果。为了评估 HGHDA 的性能,我们在两个基准数据集上进行了一系列广泛的实验,结果表明 HGHDA 优于为 HDA 预测提出的最先进算法。此外,我们对川芎和黄芪的案例研究是验证 HGHDA 有效性的一个有力指标,因为 HGHDA 分别预测川芎和黄芪的前 10 种疾病中有七种和八种已在文献中报道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c50/10939431/defcbd15b689/bbae067f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验