Niu Chang, Long Linjia, Zhang Yizhi, Lin Zehao, Tan Pukun, Lin Jian-Yu, Wu Wenzhuo, Wang Haiyan, Ye Peide D
Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
Adv Mater. 2025 May;37(20):e2418142. doi: 10.1002/adma.202418142. Epub 2025 Apr 8.
The ongoing demand for more energy-efficient, high-performance electronics is driving the exploration of innovative materials and device architectures, where interfaces play a crucial role due to the continuous downscaling of device dimensions. Tellurium (Te), in its 2D form, offers significant potential due to its high carrier mobility and ambipolar characteristics, with the carrier type easily tunable via surface modulation. In this study, atomically controlled material transformations in 2D Te are leveraged to create intimate junctions, enabling near-ideal field-effect transistors (FETs) for both n-type and p-type operation. A NiTe-Te contact provides highly transparent interfaces, resulting in low contact resistance, while the TiO-Te gate dielectric forms an ultraclean interface with a capacitance equivalent to 0.88 nm equivalent oxide thickness (EOT), where the quantum capacitance of Te is observed. Subthreshold slopes (SS) approach the Boltzmann limit, with a record-low SS of 3.5 mV dec achieved at 10 K. Furthermore, 2D Te-based complementary metal-oxide-semiconductor (CMOS) inverters are demonstrated operating at an ultralow voltage of 0.08 V with a voltage gain of 7.1 V/V. This work presents a promising approach to forming intimate dielectric/semiconductor and metal/semiconductor junctions for next-generation low-power electronic devices.
对更节能、高性能电子产品的持续需求推动了对创新材料和器件架构的探索,由于器件尺寸不断缩小,界面在其中起着至关重要的作用。二维形式的碲(Te)因其高载流子迁移率和双极性特性而具有巨大潜力,其载流子类型可通过表面调制轻松调节。在本研究中,利用二维碲中原子控制的材料转变来创建紧密结,从而实现用于n型和p型操作的近乎理想的场效应晶体管(FET)。NiTe-Te接触提供了高度透明的界面,导致低接触电阻,而TiO-Te栅极电介质形成了一个超清洁界面,其电容等效于0.88nm等效氧化层厚度(EOT),在此观察到了碲的量子电容。亚阈值斜率(SS)接近玻尔兹曼极限,在10K时实现了创纪录的低SS值3.5mV/dec。此外,展示了基于二维碲的互补金属氧化物半导体(CMOS)反相器在0.08V的超低电压下工作,电压增益为7.1V/V。这项工作为下一代低功耗电子器件形成紧密的电介质/半导体和金属/半导体结提供了一种很有前景的方法。