Birchfield Aaron S, Musayev Faik N, Castillo Abdul J, Zorn George, Fuglestad Brian
Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
bioRxiv. 2025 Jan 14:2025.01.10.632451. doi: 10.1101/2025.01.10.632451.
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous pollutants that bioaccumulate in wildlife and humans, yet the molecular basis of their protein interactions remains poorly understood. Here, we show that human adipocyte fatty acid-binding protein (FABP4) can bind a diverse array of PFAS, including next-generation replacements for legacy chemicals and longer-chain perfluorocarboxylic acids. Shorter-chain PFAS, although weaker binders, still displayed measurable affinities-surpassing those of their nonfluorinated analogs. We determined crystal structures of FABP4 bound to perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), and perfluorohexadecanoic acid (PFHxDA), revealing three distinct binding modes. Notably, PFOA binds in two separate sites, and two distinct conformations define single-ligand binding of PFDA and PFHxDA. These arrangements enhance hydrophobic interactions within the binding cavity and likely explain the low micromolar dissociation constants observed in fluorescence competition assays. Our findings underscore the critical roles of chain length, headgroup functionality, and protein conformation in PFAS-FABP4 interactions. Given the emerging implications of the role of FABP4 in endocrine function, even subtle PFAS-induced perturbations could affect metabolic regulation and disease risk. Overall, this work highlights the value of direct structural and biochemical insights into PFAS-FABP4 interactions and paves the way for future research on PFAS transport and toxicological outcomes.
全氟和多氟烷基物质(PFAS)是普遍存在的污染物,会在野生动物和人类体内生物累积,但其与蛋白质相互作用的分子基础仍知之甚少。在此,我们表明人类脂肪细胞脂肪酸结合蛋白(FABP4)能结合多种PFAS,包括传统化学品的下一代替代品以及长链全氟羧酸。短链PFAS虽然结合力较弱,但仍表现出可测量的亲和力,超过其非氟化类似物。我们确定了FABP4与全氟辛酸(PFOA)、全氟癸酸(PFDA)和全氟十六烷酸(PFHxDA)结合的晶体结构,揭示了三种不同的结合模式。值得注意的是,PFOA在两个不同位点结合,两种不同构象定义了PFDA和PFHxDA的单配体结合。这些排列增强了结合腔内的疏水相互作用,可能解释了荧光竞争试验中观察到的低微摩尔解离常数。我们的研究结果强调了链长、头部基团功能和蛋白质构象在PFAS - FABP4相互作用中的关键作用。鉴于FABP4在内分泌功能中的作用日益凸显,即使是PFAS引起的细微扰动也可能影响代谢调节和疾病风险。总体而言,这项工作突出了对PFAS - FABP4相互作用进行直接结构和生化研究的价值,并为未来PFAS转运和毒理学结果的研究铺平了道路。