Iwasaki Kenichi, Neuhauser Charles, Stokes Chris, Rayshubskiy Aleksandr
The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02138.
Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2426180122. doi: 10.1073/pnas.2426180122. Epub 2025 Apr 8.
Engineering small autonomous agents capable of operating in the microscale environment remains a key challenge, with current systems still evolving. Our study explores the fruit fly, , a classic model system in biology and a species adept at microscale interaction, as a biological platform for microrobotics. Initially, we focus on remotely directing the walking paths of fruit flies in an experimental arena. We accomplish this through two distinct approaches: harnessing the fruit flies' optomotor response and optogenetic modulation of its olfactory system. These techniques facilitate reliable and repeated guidance of flies between arbitrary spatial locations. We guide flies along predetermined trajectories, enabling them to scribe patterns resembling textual characters through their locomotion. We enhance olfactory-guided navigation through additional optogenetic activation of attraction-inducing mushroom body output neurons. We extend this control to collective behaviors in shared spaces and navigation through constrained maze-like environments. We further use our guidance technique to enable flies to carry a load across designated points in space, establishing the upper bound on their weight-carrying capabilities. Additionally, we demonstrate that visual guidance can facilitate novel interactions between flies and objects, showing that flies can consistently relocate a small spherical object over significant distances. Last, we demonstrate multiagent formation control, with flies alternating between distinct spatial patterns. Beyond expanding tools available for microrobotics, these behavioral contexts can provide insights into the neurological basis of behavior in fruit flies.
设计能够在微观环境中运行的小型自主智能体仍然是一项关键挑战,当前的系统仍在不断发展。我们的研究探索了果蝇,这一生物学中的经典模型系统以及擅长微观尺度相互作用的物种,作为微型机器人技术的生物平台。最初,我们专注于在实验场地中远程引导果蝇的行走路径。我们通过两种不同的方法来实现这一点:利用果蝇的视动反应以及对其嗅觉系统进行光遗传学调制。这些技术有助于在任意空间位置之间对果蝇进行可靠且重复的引导。我们引导果蝇沿着预定轨迹行进,使它们能够通过移动描绘出类似文字字符的图案。我们通过对诱导吸引的蘑菇体输出神经元进行额外的光遗传学激活来增强嗅觉引导的导航。我们将这种控制扩展到共享空间中的集体行为以及在类似迷宫的受限环境中的导航。我们进一步利用我们的引导技术使果蝇能够在空间中的指定点携带负载,确定它们承载重量能力的上限。此外,我们证明视觉引导可以促进果蝇与物体之间的新型相互作用,表明果蝇能够在相当长的距离内持续重新定位一个小的球形物体。最后,我们展示了多智能体编队控制,果蝇在不同的空间模式之间交替。除了扩展微型机器人技术可用的工具外,这些行为背景还可以为果蝇行为的神经学基础提供见解。