Guttmann-Flury Eva, Sheng Xinjun, Zhu Xiangyang
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China.
Sci Data. 2025 Apr 8;12(1):587. doi: 10.1038/s41597-025-04861-9.
In Brain-Computer Interface (BCI) research, the detailed study of blinks is crucial. They can be considered as noise, affecting the efficiency and accuracy of decoding users' cognitive states and intentions, or as potential features, providing valuable insights into users' behavior and interaction patterns. We introduce a large dataset capturing electroencephalogram (EEG) signals, eye-tracking, high-speed camera recordings, as well as subjects' mental states and characteristics, to provide a multifactor analysis of eye-related movements. Four paradigms - motor imagery, motor execution, steady-state visually evoked potentials, and P300 spellers - are selected due to their capacity to evoke various sensory-motor responses and potential influence on ocular activity. This online-available dataset contains over 46 hours of data from 31 subjects across 63 sessions, totaling 2520 trials for each of the first three paradigms, and 5670 for P300. This multimodal and multi-paradigms dataset is expected to allow the development of algorithms capable of efficiently handling eye-induced artifacts and enhancing task-specific classification. Furthermore, it offers the opportunity to evaluate the cross-paradigm robustness involving the same participants.
在脑机接口(BCI)研究中,对眨眼进行详细研究至关重要。它们既可以被视为噪声,影响解码用户认知状态和意图的效率及准确性,也可以被视为潜在特征,为洞察用户行为和交互模式提供有价值的信息。我们引入了一个大型数据集,该数据集记录了脑电图(EEG)信号、眼动追踪、高速摄像机记录以及受试者的心理状态和特征,以对与眼睛相关的运动进行多因素分析。由于具有引发各种感觉运动反应的能力以及对眼部活动的潜在影响,我们选择了四种范式——运动想象、运动执行、稳态视觉诱发电位和P300拼写器。这个在线可用数据集包含来自31名受试者在63次实验中的超过46小时的数据,前三种范式每种共有2520次试验,P300范式有5670次试验。这个多模态、多范式的数据集有望推动能够有效处理眼部诱发伪迹并增强特定任务分类的算法的开发。此外,它还提供了评估涉及相同参与者的跨范式稳健性的机会。