LaBella Dominic
Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:259-273. doi: 10.1007/978-3-031-83274-1_21. Epub 2025 Mar 3.
Automated segmentation of gross tumor volumes (GTVp) and lymph nodes (GTVn) in head and neck cancer using MRI presents a critical challenge with significant potential to enhance radiation oncology workflows. In this study, we developed a deep learning pipeline based on the SegResNet architecture, integrated into the Auto3DSeg framework, to achieve fully-automated segmentation on pre-treatment (pre-RT) and mid-treatment (mid-RT) MRI scans as part of the DLaBella29 team submission to the HNTS-MRG 2024 challenge. For Task 1, we used an ensemble of six SegResNet models with predictions fused via weighted majority voting. The models were pre-trained on both pre-RT and mid-RT image-mask pairs, then fine-tuned on pre-RT data, without any pre-processing. For Task 2, an ensemble of five SegResNet models was employed, with predictions fused using majority voting. Pre-processing for Task 2 involved setting all voxels more than 1 cm from the registered pre-RT masks to background (value 0), followed by applying a bounding box to the image. Post-processing for both tasks included removing tumor predictions smaller than 175-200 mm and node predictions under 50-60 mm. Our models achieved testing DSCagg scores of 0.72 and 0.82 for GTVn and GTVp in Task 1 (pre-RT MRI) and testing DSCagg scores of 0.81 and 0.49 for GTVn and GTVp in Task 2 (mid-RT MRI). This study underscores the feasibility and promise of deep learning-based auto-segmentation for improving clinical workflows in radiation oncology, particularly in adaptive radiotherapy. Future efforts will focus on refining mid-RT segmentation performance and further investigating the clinical implications of automated tumor delineation.
利用磁共振成像(MRI)对头颈部癌的大体肿瘤体积(GTVp)和淋巴结(GTVn)进行自动分割是一项严峻挑战,但具有显著潜力来优化放射肿瘤学工作流程。在本研究中,我们基于SegResNet架构开发了一个深度学习管道,并将其集成到Auto3DSeg框架中,以在治疗前(放疗前)和治疗中(放疗中)的MRI扫描上实现全自动分割,这是DLaBella29团队提交给2024年HNTS - MRG挑战的一部分。对于任务1,我们使用了六个SegResNet模型的集成,通过加权多数投票融合预测结果。这些模型在放疗前和放疗中的图像 - 掩码对上进行预训练,然后在放疗前数据上进行微调,无需任何预处理。对于任务2,采用了五个SegResNet模型的集成,使用多数投票融合预测结果。任务2的预处理包括将距已配准的放疗前掩码超过1厘米的所有体素设置为背景(值为0),然后对图像应用边界框。两项任务的后处理都包括去除小于175 - 200立方毫米的肿瘤预测和小于50 - 60立方毫米的淋巴结预测。在任务1(放疗前MRI)中,我们的模型对GTVn和GTVp的测试DSCagg分数分别为0.72和0.82;在任务2(放疗中MRI)中,对GTVn和GTVp的测试DSCagg分数分别为0.81和0.49。本研究强调了基于深度学习的自动分割在改善放射肿瘤学临床工作流程,特别是在自适应放疗中的可行性和前景。未来的工作将集中在优化放疗中分割性能,并进一步研究自动肿瘤勾画的临床意义。