Suppr超能文献

使用Invivo软件在锥形束计算机断层扫描上进行自动标志点识别和头影测量的准确性和可靠性。

Accuracy and reliability of automated landmark identification and cephalometric measurements on cone beam computed tomography using Invivo software.

作者信息

Jung Young-Eun, Suh Heeyeon, Park Joorok, Oh Heesoo

出版信息

Angle Orthod. 2025 Apr 10;95(4):362-70. doi: 10.2319/122324-1049.1.

Abstract

OBJECTIVES

To evaluate the accuracy and reliability of an automated landmark identification (ALI) system and the impact of ALI errors on cephalometric measurements on cone-beam computed tomography (CBCT) images.

MATERIALS AND METHODS

Thirty-one landmarks were identified on 76 CBCT images using Invivo7 software (Anatomage, San Jose, Calif). Ground truth was established by averaging landmark coordinates from two calibrated human examiners. The accuracy of the ALI system was assessed by the mean absolute error (MAE, mm) across coordinate axes, the mean error distance (mm), and the successful detection rate (SDR) for each landmark. Interexaminer reliability between the ALI and manual landmark location was evaluated. Eighteen cephalometric measurements were computed from 25 landmarks. Accuracy of measurements from the ALI system was assessed with the MAE and successful measurement rates (SMR).

RESULTS

The ALI system closely matched human examiners in landmark identification, with an average MAE of 0.94 ± 0.99 mm. Across all three coordinate axes, 87% of the landmarks had <2 mm MAE. ALI average MAE for conventional linear and angular cephalometric measurements were 1.35 ± 1.33 mm and 0.89 ± 0.89 degrees, respectively. Only one measurement, Intercondylar Width, showed MAE >3 mm.

CONCLUSIONS

The ALI system showed clinically acceptable accuracy and reliability for the majority of cephalometric landmarks and measurements. Clinicians are advised to critically evaluate ALI landmarks with substantial errors, to fully utilize the capabilities of commercial software effectively.

摘要

目的

评估自动地标识别(ALI)系统的准确性和可靠性,以及ALI误差对锥束计算机断层扫描(CBCT)图像上头颅测量的影响。

材料与方法

使用Invivo7软件(Anatomage,加利福尼亚州圣何塞)在76张CBCT图像上识别31个地标。通过平均两位经过校准的人类检查者的地标坐标来确定真实值。通过各坐标轴上的平均绝对误差(MAE,毫米)、平均误差距离(毫米)以及每个地标点的成功检测率(SDR)来评估ALI系统的准确性。评估ALI与手动地标定位之间的检查者间可靠性。从25个地标点计算出18项头颅测量值。用MAE和成功测量率(SMR)评估ALI系统测量值的准确性。

结果

ALI系统在地标识别方面与人类检查者非常匹配,平均MAE为0.94±0.99毫米。在所有三个坐标轴上,87%的地标点MAE<2毫米。ALI在传统线性和角度头颅测量中的平均MAE分别为1.35±1.33毫米和0.89±0.89度。只有一项测量,即髁间宽度,显示MAE>3毫米。

结论

ALI系统对大多数头颅测量地标点和测量值显示出临床可接受的准确性和可靠性。建议临床医生对存在较大误差的ALI地标点进行严格评估,以有效充分利用商业软件的功能。

相似文献

本文引用的文献

6
Automatic landmark identification in cone-beam computed tomography.锥形束计算机断层扫描中的自动标志点识别。
Orthod Craniofac Res. 2023 Nov;26(4):560-567. doi: 10.1111/ocr.12642. Epub 2023 Mar 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验