Suppr超能文献

利用新型深度学习算法自动识别前后位头颅测量标志点:与人类专家的对比研究。

Automatic identification of posteroanterior cephalometric landmarks using a novel deep learning algorithm: a comparative study with human experts.

机构信息

Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.

Research and Development Team, Laon Medi Inc., 404 Park B, 723 Pangyo-ro, Bundang-gu, Seongnam-si, 13511, South Korea.

出版信息

Sci Rep. 2023 Sep 19;13(1):15506. doi: 10.1038/s41598-023-42870-z.

Abstract

This study aimed to propose a fully automatic posteroanterior (PA) cephalometric landmark identification model using deep learning algorithms and compare its accuracy and reliability with those of expert human examiners. In total, 1032 PA cephalometric images were used for model training and validation. Two human expert examiners independently and manually identified 19 landmarks on 82 test set images. Similarly, the constructed artificial intelligence (AI) algorithm automatically identified the landmarks on the images. The mean radial error (MRE) and successful detection rate (SDR) were calculated to evaluate the performance of the model. The performance of the model was comparable with that of the examiners. The MRE of the model was 1.87 ± 1.53 mm, and the SDR was 34.7%, 67.5%, and 91.5% within error ranges of < 1.0, < 2.0, and < 4.0 mm, respectively. The sphenoid points and mastoid processes had the lowest MRE and highest SDR in auto-identification; the condyle points had the highest MRE and lowest SDR. Comparable with human examiners, the fully automatic PA cephalometric landmark identification model showed promising accuracy and reliability and can help clinicians perform cephalometric analysis more efficiently while saving time and effort. Future advancements in AI could further improve the model accuracy and efficiency.

摘要

本研究旨在提出一种完全自动的前后位(PA)头影测量标志点识别模型,使用深度学习算法,并将其与专家人类检查者的准确性和可靠性进行比较。总共使用了 1032 张 PA 头影测量图像进行模型训练和验证。两名人类专家检查者独立地、手动地在 82 张测试集图像上识别了 19 个标志点。同样,构建的人工智能(AI)算法自动识别图像上的标志点。计算平均径向误差(MRE)和成功检测率(SDR)来评估模型的性能。模型的性能与检查者相当。模型的 MRE 为 1.87±1.53mm,SDR 分别为 34.7%、67.5%和 91.5%,误差范围分别为<1.0、<2.0 和<4.0mm。在自动识别中,蝶骨点和乳突的 MRE 最低,SDR 最高;髁突点的 MRE 最高,SDR 最低。与人类检查者相当,全自动 PA 头影测量标志点识别模型具有较高的准确性和可靠性,有助于临床医生更高效地进行头影测量分析,同时节省时间和精力。人工智能的未来发展可以进一步提高模型的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f864/10509166/1dca8d8f58c8/41598_2023_42870_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验