文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Antiviral potential of Melissa officinalis extracts against influenza and emerging coronaviruses.

作者信息

Alsahafi Tasneem, Bouback Thamer, Albeshri Abdulaziz, Alnhhas Sara, Ali Mohamed, Moatasim Yassmin, Kutkat Omnia, Gaballah Mohamed, Alfasi Fahad, Mater Ehab H, Al-Sarraj Faisal, Badierah Raied, Alotibi Ibrahim A, Almulaiky Yaaser Q

机构信息

Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia.

出版信息

Sci Rep. 2025 Apr 9;15(1):12118. doi: 10.1038/s41598-025-96417-5.


DOI:10.1038/s41598-025-96417-5
PMID:40204903
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11982357/
Abstract

Melissa officinalis is a perennial medicinal plant traditionally used for its diverse biological activities, including antiviral properties. This study investigates the antiviral efficacy of various extracts, including water, acetone, alkaloid, non-alkaloid, ethanol, and methanol extracts, against influenza A (H1N1), SARS-CoV-2, and MERS-CoV. The water extract demonstrated significant inhibitory effects on SARS-CoV-2 (IC = 421.9 µg/mL) and MERS-CoV (IC = 222.1 µg/mL) in Vero E6 cells (an African green monkey kidney cell line), with a CC of 4221 µg/mL, indicating a favorable selectivity index. Additionally, it exhibited strong activity against H1N1 in Madin-Darby canine kidney cell line (MDCK cells) (IC = 57.30 µg/mL, CC = 3073 µg/mL). Among all the extracts, the methanol extract showed the highest antiviral activity. It has IC = 2.549 µg/ml and selectivity index (SI) = 230 against H1N1.While it showed IC = 10.83 µg/ml against SARS-CoV-2 and 9.82 µg/ml against MERS-CoV with SI values of 54.2 and 59.77, respectively. Molecular docking studies revealed that 5-Methyl-5 H-naphtho[2,3-c]carbazole,7 H-Dibenzo[b, g]carbazole, 7-methyl, hesperidin, luteolin-7-glucoside-3'-glucuronide, Melitric acid A, and other compounds exhibited high binding affinities to the receptor-binding domains (RBDs) of SARS-CoV-2 and MERS-CoV spike glycoproteins, suggesting their potential to interfere with viral entry. Furthermore, GC-MS-identified bioactive compounds, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), paromomycin, and phenolic acids, demonstrated additional antiviral potential. These results underscore the potential of M. officinalis extracts as natural antiviral agents, offering a foundation for further in vitro and in vivo validation and potential therapeutic applications against respiratory viral infections, including coronaviruses and influenza viruses.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/2a5e307ee526/41598_2025_96417_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/f4cd78a29d31/41598_2025_96417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/4225c1d58921/41598_2025_96417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/7cf45d6a7f8a/41598_2025_96417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/64300f313748/41598_2025_96417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/21cdfe948556/41598_2025_96417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/7b41b4364021/41598_2025_96417_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/3d55f96f3c38/41598_2025_96417_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/b60a36609e8e/41598_2025_96417_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/2a5e307ee526/41598_2025_96417_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/f4cd78a29d31/41598_2025_96417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/4225c1d58921/41598_2025_96417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/7cf45d6a7f8a/41598_2025_96417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/64300f313748/41598_2025_96417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/21cdfe948556/41598_2025_96417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/7b41b4364021/41598_2025_96417_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/3d55f96f3c38/41598_2025_96417_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/b60a36609e8e/41598_2025_96417_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/11982357/2a5e307ee526/41598_2025_96417_Fig9_HTML.jpg

相似文献

[1]
Antiviral potential of Melissa officinalis extracts against influenza and emerging coronaviruses.

Sci Rep. 2025-4-9

[2]
Exploring the Cytotoxic Activity of Dillenia serrata Thunb. Leaf Extracts: An In Vitro and In Silico Investigation.

Asian Pac J Cancer Prev. 2025-3-1

[3]
Analysis of the SARS-CoV-2 inactivation mechanism using violet-blue light (405 nm).

Appl Environ Microbiol. 2025-6-18

[4]
In vitro virucidal activity of Echinaforce®, an Echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2.

Virol J. 2020-9-9

[5]
Dexamethasone disrupts intracellular pH homeostasis to delay coronavirus infectious bronchitis virus cell entry via sodium hydrogen exchanger 3 activation.

J Virol. 2025-6-17

[6]
Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus.

J Ethnopharmacol. 2016-7-21

[7]
Determinants of susceptibility to SARS-CoV-2 infection in murine ACE2.

J Virol. 2025-6-17

[8]
Phytocompounds as versatile drug-leads targeting mProtease in the SARS-CoV-2 virus: insights from a molecular dynamics study.

J Biomater Sci Polym Ed. 2024-11

[9]
The use of Pseudotyped Coronaviruses for the Screening of Entry Inhibitors: Green Tea Extract Inhibits the Entry of SARS-CoV-1, MERSCoV, and SARS-CoV-2 by Blocking Receptor-spike Interaction.

Curr Pharm Biotechnol. 2022

[10]
Viruses harness YxxØ motif to interact with host AP2M1 for replication: A vulnerable broad-spectrum antiviral target.

Sci Adv. 2020-8-28

本文引用的文献

[1]
RCSB Protein Data Bank: Efficient Searching and Simultaneous Access to One Million Computed Structure Models Alongside the PDB Structures Enabled by Architectural Advances.

J Mol Biol. 2023-7-15

[2]
Influenza.

Lancet. 2022-8-27

[3]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[4]
[Ocular symptoms in SARS-CoV-2 infection].

Pol Merkur Lekarski. 2022-4-19

[5]
Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges.

PLoS Pathog. 2021-12

[6]
Potential antiviral effects of some native Iranian medicinal plants extracts and fractions against influenza A virus.

BMC Complement Med Ther. 2021-10-1

[7]
Antiviral Activity of Mill. and L. Essential Oils against the Multiplication of Herpes Simplex Virus Type 1 Strains Sensitive and Resistant to Acyclovir.

Biology (Basel). 2021-8-4

[8]
SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis.

Nature. 2021-6

[9]
Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis.

BMC Complement Med Ther. 2021-1-1

[10]
Human Influenza Epidemiology.

Cold Spring Harb Perspect Med. 2021-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索