Takei Yodai, Yang Yujing, White Jonathan, Goronzy Isabel N, Yun Jina, Prasad Meera, Ombelets Lincoln J, Schindler Simone, Bhat Prashant, Guttman Mitchell, Cai Long
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Nature. 2025 May;641(8064):1037-1047. doi: 10.1038/s41586-025-08838-x. Epub 2025 Apr 9.
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization. Understanding their relationships rests on identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci and transcriptional levels in individual cells, all in complex tissues. Here, we introduce two-layer DNA seqFISH+, which enables simultaneous mapping of 100,049 genomic loci, together with the nascent transcriptome for 17,856 genes and subnuclear structures in single cells. These data enable imaging-based chromatin profiling of diverse subnuclear markers and can capture their changes at genomic scales ranging from 100-200 kilobases to approximately 1 megabase, depending on the marker and DNA locus. By using multi-omics datasets in the adult mouse cerebellum, we showed that repressive chromatin regions are more variable by cell type than are active regions across the genome. We also discovered that RNA polymerase II-enriched foci were locally associated with long, cell-type-specific genes (bigger than 200 kilobases) in a manner distinct from that of nuclear speckles. Furthermore, our analysis revealed that cell-type-specific regions of heterochromatin marked by histone H3 trimethylated at lysine 27 (H3K27me3) and histone H4 trimethylated at lysine 20 (H4K20me3) are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear structures, associated genomic loci and their effects on gene regulation, directly within complex tissues.
哺乳动物的细胞核由多种亚核结构分隔而成。这些以核体和组蛋白修饰为特征的亚核结构通常具有细胞类型特异性,并影响基因调控和三维基因组组织。了解它们之间的关系依赖于识别亚核结构的分子成分,并绘制它们与单个细胞中特定基因组位点和转录水平的关联图谱,所有这些都在复杂组织中进行。在这里,我们介绍了两层DNA seqFISH+技术,它能够同时绘制100,049个基因组位点,以及单个细胞中17,856个基因和亚核结构的新生转录组图谱。这些数据能够对多种亚核标记物进行基于成像的染色质分析,并根据标记物和DNA位点,在从100 - 200千碱基到约1兆碱基的基因组尺度上捕捉它们的变化。通过使用成年小鼠小脑的多组学数据集,我们发现抑制性染色质区域在细胞类型上比全基因组的活跃区域更具变异性。我们还发现,富含RNA聚合酶II的位点以一种不同于核斑点的方式,在局部与长的、细胞类型特异性基因(大于200千碱基)相关联。此外,我们的分析表明,以赖氨酸27三甲基化的组蛋白H3(H3K27me3)和赖氨酸20三甲基化的组蛋白H4(H4K20me3)为标记的异染色质细胞类型特异性区域,分别在特定基因和基因簇中富集,并塑造了神经元和神经胶质细胞中染色体的径向定位和染色体间相互作用。总之,我们的结果在复杂组织中直接提供了亚核结构、相关基因组位点及其对基因调控影响的单细胞高分辨率多组学视图。