与玉米相关的细菌和真菌微生物群落呈现出不同的结构模式,这取决于植物的不同部位和水分可利用性。
Maize associated bacterial and fungal microbiomes show contrasting conformation patterns dependent on plant compartment and water availability.
作者信息
Díaz-González Sandra, González-Bodí Sara, González-Sanz Carlos, Marín Patricia, Brunner Frédéric, Sacristán Soledad
机构信息
Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.
出版信息
BMC Plant Biol. 2025 Apr 9;25(1):448. doi: 10.1186/s12870-025-06465-2.
Plant-associated microorganisms can help crops to alleviate stress and increase the resilience of agricultural ecosystems to climate change. However, we still lack knowledge on the dynamics of soil and plant microbiomes and their response to changing conditions. This information is essential for the development of microbiome-based solutions to improve crop resilience to stressors associated with climate change. In this work, we explored: (i) the conformation of the bacterial and fungal assemblages of different soil and plant compartments (bulk soil, rhizosphere, roots, leaves and grains) along the crop cycle of maize in an open field trial; and (ii) the effect of water restriction on the maize microbiome, comparing optimal irrigation with a 30% reduction of water supply. Our results show a dynamic compartment-driven recruitment of microorganisms with contrasting patterns for bacteria and fungi that were intensified towards the end of the plant cycle. Roots showed the most differentiated bacterial assemblage while fungi conformed a very distinct community in the leaves, suggesting a relevant contribution of aerial fungal propagules to the microbiome of this plant organ. Regarding the grain, bacterial communities looked closer to those in the leaves, while fungal communities were more like those in the root. Despite the reductions in plant growth and yield, the microbiome of limited-watered plants did not show severe alterations. Still, significant impacts were observed within compartments, being fungi more responsive to limited watering than bacteria, with hallmark fungal ASVs for each compartment and irrigation regime. Network analysis suggests that bacteria and fungi may play different roles in the shifts observed under water limitation. Our study highlights the importance of conducting multikingdom analyses for a holistic understanding of the dynamics and evolution of the microbial assemblages in the whole plant and their roles in plant response to environmental stressors.
与植物相关的微生物可以帮助作物缓解压力,并增强农业生态系统对气候变化的适应能力。然而,我们仍然缺乏关于土壤和植物微生物群落动态及其对变化条件响应的知识。这些信息对于开发基于微生物群落的解决方案以提高作物对与气候变化相关的压力源的适应能力至关重要。在这项工作中,我们探究了:(i)在田间试验中,沿着玉米作物生长周期,不同土壤和植物部分(大田土壤、根际、根、叶和籽粒)中细菌和真菌群落的组成;(ii)水分限制对玉米微生物群落的影响,将最佳灌溉与减少30%的供水量进行比较。我们的结果表明,微生物群落的招募是由动态的区室驱动的,细菌和真菌的模式不同,且在植物周期末期这种差异加剧。根显示出最具分化的细菌群落,而真菌在叶中形成了非常独特的群落,这表明气生真菌繁殖体对该植物器官的微生物群落有重要贡献。关于籽粒,细菌群落与叶中的更相似,而真菌群落更类似于根中的。尽管植物生长和产量有所下降,但水分受限植物的微生物群落并未显示出严重变化。不过,在不同区室中观察到了显著影响,真菌比细菌对水分限制更敏感,每个区室和灌溉方式都有标志性的真菌ASV。网络分析表明,细菌和真菌在水分限制下观察到的变化中可能发挥不同作用。我们的研究强调了进行多领域分析对于全面理解整个植物中微生物群落的动态和演变及其在植物对环境压力源响应中的作用的重要性。