Catarecha Pablo, King Eoghan, Díaz-González Sandra, Caro Elena, Sacristán Soledad, Del Pozo Juan Carlos
Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, Madrid, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
Front Microbiol. 2025 Aug 12;16:1334648. doi: 10.3389/fmicb.2025.1334648. eCollection 2025.
Climate change is increasing the overall temperature of the planet and increasing the number of extreme heat waves events. These phenomena are negatively affecting crop production and food security. Thus, under this scenario, understanding the adaptations that encompass the plant response to high temperature will be essential to enhance crop tolerance and yield. Plant responses to elevated temperature rely on both genetic factors and the dynamic interplay with the surrounding microbiota. Recently, the role of root microbiota as a key player in the plant's response to heat, is gaining significant relevance. This work presents the analysis of fungal microbiota from the rhizosphere and the root-associated fractions of tomato roots in response to high temperature. Although the analyses were done in an enclosed environment, we used the TGRooZ (Temperature Gradient Root Zone) system to mimic field conditions. The TGRooZ generates a temperature gradient like the natural soil during a heat wave event. We found that distinct soil/root compartments assemble a different fungal community, with the rhizosphere fraction exhibiting greater diversity and abundance, while the root-associated fraction was enriched in fewer but more specialized taxa. Notably, the experimental conditions used to analyze heat responses significantly influenced the final microbiome composition. Our data suggest that the TGRooZ system will enable more accurate analysis of plant-microbiome responses to heat stress and help evaluate the potential of beneficial microbes to enhance crop productivity under near-natural conditions.
气候变化正在提高地球的整体温度,并增加极端热浪事件的数量。这些现象正在对作物生产和粮食安全产生负面影响。因此,在这种情况下,了解植物对高温的适应性反应对于提高作物耐受性和产量至关重要。植物对温度升高的反应既依赖于遗传因素,也依赖于与周围微生物群的动态相互作用。最近,根际微生物群作为植物对热反应的关键参与者的作用越来越受到关注。这项工作展示了对番茄根际和根相关部分的真菌微生物群对高温反应的分析。尽管分析是在封闭环境中进行的,但我们使用了TGRooZ(温度梯度根区)系统来模拟田间条件。TGRooZ在热浪事件期间会产生类似自然土壤的温度梯度。我们发现,不同的土壤/根区室组装了不同的真菌群落,根际部分表现出更大的多样性和丰度,而根相关部分则富集在较少但更特殊的分类群中。值得注意的是,用于分析热反应的实验条件显著影响了最终的微生物群落组成。我们的数据表明,TGRooZ系统将能够更准确地分析植物-微生物群对热胁迫的反应,并有助于评估有益微生物在近自然条件下提高作物生产力的潜力。