Suppr超能文献

qlty:在科学成像深度学习工作流程中处理大型张量。 需注意,原文中的“qlty”可能是拼写错误,正常可能是“quality”(质量) 。

qlty: handling large tensors in scientific imaging deep-learning workflows.

作者信息

Zwart Petrus H

机构信息

Center for Advanced Mathematics in Energy Research Applications, Lawrence Berkeley National Laboratory.

Berkeley Synchrotron Infrared Structural Biology program, Lawrence Berkeley National Laboratory.

出版信息

Softw Impacts. 2024 Sep;21. doi: 10.1016/j.simpa.2024.100696. Epub 2024 Aug 26.

Abstract

In scientific imaging, deep learning has become a pivotal tool for image analytics. However, handling large volumetric datasets, which often exceed the memory capacity of standard GPUs, require special attention when subjected to deep learning efforts. This paper introduces qlty, a toolkit designed to address these challenges through tensor management techniques. qlty offers robust methods for subsampling, cleaning, and stitching of large-scale spatial data, enabling effective training and inference even in resource-limited environments.

摘要

在科学成像领域,深度学习已成为图像分析的关键工具。然而,处理通常超出标准GPU内存容量的大型体数据集时,在进行深度学习工作时需要特别注意。本文介绍了qlty,这是一个旨在通过张量管理技术应对这些挑战的工具包。qlty为大规模空间数据的子采样、清理和拼接提供了强大的方法,即使在资源有限的环境中也能实现有效的训练和推理。

相似文献

1
qlty: handling large tensors in scientific imaging deep-learning workflows.
Softw Impacts. 2024 Sep;21. doi: 10.1016/j.simpa.2024.100696. Epub 2024 Aug 26.
2
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
3
A Deep Learning Pipeline for Nucleus Segmentation.
Cytometry A. 2020 Dec;97(12):1248-1264. doi: 10.1002/cyto.a.24257. Epub 2020 Nov 19.
4
Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution.
Compil Constr. 2022 Mar;2022:104-116. doi: 10.1145/3497776.3517766. Epub 2022 Mar 18.
5
SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI.
Neuroimage. 2022 Jun;253:119033. doi: 10.1016/j.neuroimage.2022.119033. Epub 2022 Mar 1.
7
PyRaDiSe: A Python package for DICOM-RT-based auto-segmentation pipeline construction and DICOM-RT data conversion.
Comput Methods Programs Biomed. 2023 Apr;231:107374. doi: 10.1016/j.cmpb.2023.107374. Epub 2023 Jan 28.
8
Deep learning on image denoising: An overview.
Neural Netw. 2020 Nov;131:251-275. doi: 10.1016/j.neunet.2020.07.025. Epub 2020 Aug 6.

引用本文的文献

1
Optimizing inference of segmentation on high-resolution images in MLExchange.
J Supercomput. 2025;81(9):1058. doi: 10.1007/s11227-025-07413-5. Epub 2025 Jun 20.

本文引用的文献

1
Image processing tools for petabyte-scale light sheet microscopy data.
Nat Methods. 2024 Dec;21(12):2342-2352. doi: 10.1038/s41592-024-02475-4. Epub 2024 Oct 17.
2
DLSIA: Deep Learning for Scientific Image Analysis.
J Appl Crystallogr. 2024 Mar 21;57(Pt 2):392-402. doi: 10.1107/S1600576724001390. eCollection 2024 Apr 1.
3
Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix.
J Cell Biol. 2024 Jun 3;223(6). doi: 10.1083/jcb.202309125. Epub 2024 Mar 20.
4
EMPIAR: the Electron Microscopy Public Image Archive.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1503-D1511. doi: 10.1093/nar/gkac1062.
5
Regulation of liver subcellular architecture controls metabolic homeostasis.
Nature. 2022 Mar;603(7902):736-742. doi: 10.1038/s41586-022-04488-5. Epub 2022 Mar 9.
6
Cellpose: a generalist algorithm for cellular segmentation.
Nat Methods. 2021 Jan;18(1):100-106. doi: 10.1038/s41592-020-01018-x. Epub 2020 Dec 14.
8
Inferring low-dimensional microstructure representations using convolutional neural networks.
Phys Rev E. 2017 Nov;96(5-1):052111. doi: 10.1103/PhysRevE.96.052111. Epub 2017 Nov 9.
9
A mixed-scale dense convolutional neural network for image analysis.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):254-259. doi: 10.1073/pnas.1715832114. Epub 2017 Dec 26.
10
Enhanced FIB-SEM systems for large-volume 3D imaging.
Elife. 2017 May 13;6:e25916. doi: 10.7554/eLife.25916.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验