Zwart Petrus H
Center for Advanced Mathematics in Energy Research Applications, Lawrence Berkeley National Laboratory.
Berkeley Synchrotron Infrared Structural Biology program, Lawrence Berkeley National Laboratory.
Softw Impacts. 2024 Sep;21. doi: 10.1016/j.simpa.2024.100696. Epub 2024 Aug 26.
In scientific imaging, deep learning has become a pivotal tool for image analytics. However, handling large volumetric datasets, which often exceed the memory capacity of standard GPUs, require special attention when subjected to deep learning efforts. This paper introduces qlty, a toolkit designed to address these challenges through tensor management techniques. qlty offers robust methods for subsampling, cleaning, and stitching of large-scale spatial data, enabling effective training and inference even in resource-limited environments.
在科学成像领域,深度学习已成为图像分析的关键工具。然而,处理通常超出标准GPU内存容量的大型体数据集时,在进行深度学习工作时需要特别注意。本文介绍了qlty,这是一个旨在通过张量管理技术应对这些挑战的工具包。qlty为大规模空间数据的子采样、清理和拼接提供了强大的方法,即使在资源有限的环境中也能实现有效的训练和推理。