Suppr超能文献

功能磁共振成像(fMRI)数据质量控制评估的评分者间信度:使用pyfMRIqc的标准化方案及实用指南

Inter-rater reliability of functional MRI data quality control assessments: A standardised protocol and practical guide using pyfMRIqc.

作者信息

Williams Brendan, Hedger Nicholas, McNabb Carolyn B, Rossetti Gabriella M K, Christakou Anastasia

机构信息

Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom.

School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom.

出版信息

Front Neurosci. 2023 Feb 3;17:1070413. doi: 10.3389/fnins.2023.1070413. eCollection 2023.

Abstract

Quality control is a critical step in the processing and analysis of functional magnetic resonance imaging data. Its purpose is to remove problematic data that could otherwise lead to downstream errors in the analysis and reporting of results. The manual inspection of data can be a laborious and error-prone process that is susceptible to human error. The development of automated tools aims to mitigate these issues. One such tool is pyfMRIqc, which we previously developed as a user-friendly method for assessing data quality. Yet, these methods still generate output that requires subjective interpretations about whether the quality of a given dataset meets an acceptable standard for further analysis. Here we present a quality control protocol using pyfMRIqc and assess the inter-rater reliability of four independent raters using this protocol for data from the fMRI Open QC project (https://osf.io/qaesm/). Data were classified by raters as either "include," "uncertain," or "exclude." There was moderate to substantial agreement between raters for "include" and "exclude," but little to no agreement for "uncertain." In most cases only a single rater used the "uncertain" classification for a given participant's data, with the remaining raters showing agreement for "include"/"exclude" decisions in all but one case. We suggest several approaches to increase rater agreement and reduce disagreement for "uncertain" cases, aiding classification consistency.

摘要

质量控制是功能磁共振成像数据处理与分析中的关键步骤。其目的是去除可能会在结果分析与报告中导致后续错误的有问题数据。人工检查数据可能是一个费力且容易出错的过程,容易出现人为失误。自动化工具的开发旨在缓解这些问题。一种这样的工具是pyfMRIqc,我们之前将其开发为一种评估数据质量的用户友好型方法。然而,这些方法仍然会生成输出结果,对于给定数据集的质量是否符合进一步分析的可接受标准,仍需要主观解释。在此,我们介绍一种使用pyfMRIqc的质量控制方案,并使用该方案评估来自功能磁共振成像开放质量控制项目(https://osf.io/qaesm/)数据的四位独立评分者之间的评分者间信度。评分者将数据分类为“纳入”、“不确定”或“排除”。对于“纳入”和“排除”,评分者之间存在中度到高度的一致性,但对于“不确定”,一致性很低或几乎没有。在大多数情况下,对于给定参与者的数据,只有一位评分者使用“不确定”分类,其余评分者在除一个案例外的所有案例中,对于“纳入”/“排除”的决定都表现出一致性。我们提出了几种方法来提高评分者之间的一致性,并减少“不确定”案例中的不一致性,以帮助实现分类的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8f8/9936142/90660d2ace54/fnins-17-1070413-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验