Suppr超能文献

一种考虑资源异构性和社会动态性的基于分数的博弈方法,用于社交物联网网络中的流量优化

A Score-Based Game Approach Considering Resource Heterogeneity and Social Dynamics for Traffic Optimization in Social IoT Networks.

作者信息

Umar Muhammad Muneer, Almutairi Ali F, Khan Shafiullah

机构信息

Institute of Computing, Kohat University of Science & Technology, Kohat 26000, Pakistan.

Electrical Engineering Department, Kuwait University, Safat 13060, Kuwait.

出版信息

Sensors (Basel). 2025 Apr 4;25(7):2297. doi: 10.3390/s25072297.

Abstract

The incorporation of human-like social concepts into the Internet of Things (IoT) has given rise to the paradigm of Social IoT (SIoT). In these networks, objects autonomously form social relationships to enhance network scalability in information and service discovery, focusing on their own benefits. However, social likeness or dislikeness among nodes can result in selfish behavior, adversely affecting network performance. Existing node stimulation mechanisms primarily focus on ad hoc and IoT networks, emphasizing topological structures and traffic patterns, while overlooking the social and behavioral factors crucial to the SIoT. This work proposes a novel node stimulation scheme for the SIoT that incorporates both social and behavioral characteristics and network topology. The mechanism employs a virtual currency-based game to incentivize cooperation by considering parameters such as proximity, energy levels, buffer size, correlated relays, and data quality. Additionally, social factors-including social preference, node importance, interaction history, and the probability of vital data transfer-are integrated into the decision-making process. Simulation results demonstrate that the proposed mechanism outperforms existing approaches in terms of energy efficiency, throughput, packet delivery ratio, and end-to-end delay, making it a robust solution for improving cooperation and performance in SIoT networks.

摘要

将类人社交概念融入物联网(IoT)催生了社交物联网(SIoT)范式。在这些网络中,对象自主形成社交关系以提高信息和服务发现中的网络可扩展性,重点关注自身利益。然而,节点之间的社交喜好或厌恶可能导致自私行为,对网络性能产生不利影响。现有的节点激励机制主要集中在自组织网络和物联网网络,强调拓扑结构和流量模式,而忽略了对SIoT至关重要的社会和行为因素。这项工作提出了一种新颖的SIoT节点激励方案,该方案结合了社会和行为特征以及网络拓扑。该机制采用基于虚拟货币的游戏,通过考虑诸如接近度、能量水平、缓冲区大小、相关中继和数据质量等参数来激励合作。此外,社会因素——包括社会偏好、节点重要性、交互历史和重要数据传输的概率——被整合到决策过程中。仿真结果表明,所提出的机制在能源效率、吞吐量、数据包交付率和端到端延迟方面优于现有方法,使其成为改善SIoT网络中合作和性能的强大解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9227/11991243/6d5c20b69c8d/sensors-25-02297-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验