Radzikowska Marta, Pike Alexandra C, Hall-McMaster Sam
Max Planck Institute for Human Development, Berlin, Germany.
Department of Brain and Cognition, University of Amsterdam, Netherlands.
Comput Psychiatr. 2025 Apr 7;9(1):100-121. doi: 10.5334/cpsy.128. eCollection 2025.
Anorexia nervosa (AN) is a severe eating disorder, marked by persistent changes in behaviour, cognition and neural activity that result in insufficient body weight. Recently, there has been a growing interest in using computational approaches to understand the cognitive mechanisms that underlie AN symptoms, such as persistent weight loss behaviours, rigid rules around food and preoccupation with body size. Our aim was to systematically review progress in this emerging field. Based on articles selected using systematic and reproducible criteria, we identified five current themes in the computational study of AN: 1) reinforcement learning; 2) value-based decision-making; 3) goal-directed and habitual control over behaviour; 4) cognitive flexibility; and 5) theory-based accounts. In addition to describing and appraising the insights from each of these areas, we highlight methodological considerations for the field and outline promising future directions to establish the clinical relevance of (neuro)computational changes in AN.
神经性厌食症(AN)是一种严重的饮食失调症,其特征是行为、认知和神经活动持续发生变化,导致体重不足。最近,人们越来越有兴趣使用计算方法来理解导致神经性厌食症症状的认知机制,如持续的体重减轻行为、围绕食物的严格规则以及对体型的过度关注。我们的目的是系统地回顾这一新兴领域的进展。基于使用系统且可重复的标准选择的文章,我们确定了神经性厌食症计算研究中的五个当前主题:1)强化学习;2)基于价值的决策;3)对行为的目标导向和习惯性控制;4)认知灵活性;5)基于理论的解释。除了描述和评估这些领域各自的见解外,我们还强调了该领域的方法学考量,并概述了有前景的未来方向,以确立神经性厌食症(神经)计算变化的临床相关性。