Suppr超能文献

一项评估脑电图(EEG)与经颅磁刺激(TMS)同步采集联合同步方法的对比研究。

A comparative study to assess synchronisation methods for combined simultaneous EEG and TMS acquisition.

作者信息

Miziara Isabela M, Fallon Nicholas, Marshall Andrew, Lakany Heba

机构信息

Department of Musculoskeletal and Ageing, University of Liverpool, Liverpool, L7 8TX, UK.

Technology Institute, Federal University of Pará, Belém, 66075-110, Brazil.

出版信息

Sci Rep. 2025 Apr 14;15(1):12816. doi: 10.1038/s41598-025-97225-7.

Abstract

Electroencephalography (EEG) combined with transcranial magnetic stimulation (TMS) provides valuable insights into cortical excitability and connectivity but faces challenges including data artefacts, limited spatial resolution, and the need for standardised synchronisation protocols. This study evaluates three TMS-EEG synchronisation paradigms using the Lab Streaming Layer (LSL) to analyse time intervals and latency. Paradigm 1 employs a software-based approach with simultaneous pulses to both EEG and TMS devices. Paradigm 2, another software-based method, transmits a pulse to the TMS device first, followed by the EEG amplifier. Paradigm 3 uses a hardware-based approach where pulses generated by the TMS device are directly routed to the EEG amplifier. Synchronisation was assessed at frequencies of 1, 5, 10, and 20 Hz, with each frequency tested ten times using 100-pulse trains. Results demonstrate that Paradigm 3 provides superior performance, showing narrower distributions, lower time interval error (TIE) and latency values, and higher precision and accuracy. However, it requires a high sample rate from the EEG amplifier and limits additional device integration. Paradigms 1 and 2, while exhibiting greater variability and lower precision, allow for additional device integration and inter-pulse control via LSL. All paradigms achieved low latency and timing error values within acceptable limits for EEG applications, affirming their viability. The choice of synchronisation paradigm has a significant impact on performance, and the current lack of standardisation in TMS-EEG studies presents ongoing challenges. These findings underscore the necessity of selecting an appropriate synchronisation method based on specific study requirements and resources, potentially advancing standardised protocols for TMS and enhancing the reliability of TMS-EEG research.

摘要

脑电图(EEG)与经颅磁刺激(TMS)相结合,为了解皮质兴奋性和连通性提供了有价值的见解,但面临着包括数据伪迹、空间分辨率有限以及需要标准化同步协议等挑战。本研究使用实验室流层(LSL)评估了三种TMS-EEG同步范式,以分析时间间隔和潜伏期。范式1采用基于软件的方法,同时向EEG和TMS设备发送脉冲。范式2是另一种基于软件的方法,先向TMS设备发送脉冲,然后是EEG放大器。范式3使用基于硬件的方法,将TMS设备产生的脉冲直接路由到EEG放大器。在1、5、10和20Hz的频率下评估同步情况,每个频率使用100个脉冲序列进行十次测试。结果表明,范式3具有卓越的性能,显示出更窄的分布、更低的时间间隔误差(TIE)和潜伏期值,以及更高的精度和准确性。然而,它需要EEG放大器具有高采样率,并限制了额外设备的集成。范式1和2虽然表现出更大的变异性和更低的精度,但允许通过LSL进行额外设备的集成和脉冲间控制。所有范式在EEG应用可接受的范围内都实现了低潜伏期和定时误差值,证实了它们的可行性。同步范式的选择对性能有重大影响,目前TMS-EEG研究缺乏标准化仍然是持续存在的挑战。这些发现强调了根据具体研究要求和资源选择合适同步方法的必要性,这可能推动TMS的标准化协议发展,并提高TMS-EEG研究的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c159/11997080/465186937c63/41598_2025_97225_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验