Gomez-Tapia Carlos, Bozic Bojan, Longo Luca
Artificial Intelligence and Cognitive Load Research Lab, Applied Intelligence Research Centre, School of Computer Science, Technological University Dublin, Dublin, Ireland.
Front Neuroimaging. 2025 Mar 31;4:1479569. doi: 10.3389/fnimg.2025.1479569. eCollection 2025.
Electroencephalography (EEG) source localization (SL) has shown potential for various applications, from epilepsy and seizure focus localization to psychiatric disorder evaluation. However, questions remain about its neurophysiological plausibility in real-world settings where only EEG signals are available without subject-specific anatomical information. This study investigates whether established pre-processing and source localization methods can produce neurophysiologically plausible activation patterns when applied to naturalistic EEG data without structural magnetic resonance imaging (MRI) or digitized electrode positions.
Proven methods are aggregated into an end-to-end pipeline that includes automatic pre-processing, eLORETA for source estimation, and a shared forward model derived from the ICBM 2009c Nonlinear Symmetric template and its corresponding CerebrA atlas. The pipeline is validated using two distinct datasets: the Healthy Brain Network (HBN) dataset comparing resting and naturalistic video-watching states and the multi-session and multi-task EEG cognitive dataset (COGBCI) comparing different cognitive workload levels. The validation approach focuses on whether the reconstructed source activations exhibit expected neurophysiological patterns via permutation testing.
Findings revealed significant differences between resting state and video-watching tasks, with greater activation in posterior regions during video-watching, consistent with known visual processing pathways. The cognitive workload analysis similarly showed progressive activation increases with task difficulty, mapping to regions associated with executive function.
These results prove that established source localization methods can produce neurophysiologically plausible activation patterns without subject-specific information, highlighting the strengths and limitations of applying these methods to mid-length naturalistic EEG data. This research demonstrates the viability of template-based source analysis for research settings where individual structural imaging is unavailable or impractical.
脑电图(EEG)源定位(SL)已在多种应用中展现出潜力,从癫痫和癫痫发作灶定位到精神疾病评估。然而,在仅能获取EEG信号而无个体特异性解剖信息的现实环境中,其神经生理学合理性仍存在疑问。本研究调查了既定的预处理和源定位方法应用于无结构磁共振成像(MRI)或数字化电极位置的自然EEG数据时,是否能产生神经生理学上合理的激活模式。
将已证实的方法整合为一个端到端的流程,包括自动预处理、用于源估计的eLORETA以及源自ICBM 2009c非线性对称模板及其相应大脑图谱的共享正向模型。该流程使用两个不同的数据集进行验证:健康大脑网络(HBN)数据集,比较静息状态和自然观看视频状态;以及多会话和多任务EEG认知数据集(COGBCI),比较不同认知工作量水平。验证方法侧重于通过置换检验来确定重建的源激活是否呈现预期的神经生理模式。
研究结果显示静息状态和观看视频任务之间存在显著差异,观看视频时后脑部区域激活更强,这与已知的视觉处理通路一致。认知工作量分析同样表明,随着任务难度增加,激活逐渐增强,映射到与执行功能相关的区域。
这些结果证明,既定的源定位方法在无个体特异性信息的情况下,能够产生神经生理学上合理的激活模式,突出了将这些方法应用于中等长度自然EEG数据的优势和局限性。本研究证明了基于模板的源分析在无法获取或不适合进行个体结构成像的研究环境中的可行性。