Liu Ting, Wang Xin, Wang Simin, Zhu Erxiong, Hall Steven J, Feng Xiaojuan
Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
China National Botanical Garden, Beijing, China.
Glob Chang Biol. 2025 Apr;31(4):e70184. doi: 10.1111/gcb.70184.
Soil organic carbon (SOC) decomposition underpins soil-atmosphere carbon exchange and is regulated by climate change-mediated variations in soil redox conditions. Periodic anoxia, commonly occurring following precipitation, soil flooding, and erosion events, is assumed to preserve SOC. Yet, water saturation may also increase SOC decomposition relative to unsaturated conditions, and contradictory findings among previous studies remain unexplained. Here, using incubation experiments on 20 soils collected across a 24° latitude gradient in China, we show that 70% of the soils showed a higher or similar anoxic decomposition rate of SOC compared to the oxic treatment, indicating fast SOC loss under relatively short anoxia. Methane production was far lower than CO due to the presence of alternative terminal electron acceptors (TEAs). Variation in alternative TEAs and microbial community shows that fast anoxic decomposition was primarily driven by iron (Fe) reduction, which accounted for up to 90% of anoxic CO production. Meanwhile, positive relationships among water-extractable organic carbon (OC), hydrochloric acid-extractable ferrous Fe, relative abundance of Fe-reducing prokaryotes, and the SOC decomposition rate suggest the release of readily metabolized substrates following Fe reduction. This release provided substrates for anoxic metabolism and potentially led to the loss of OC protected by Fe (Fe-bound OC; a slow-cycling OC pool under oxic conditions). Mass balance calculation confirms that Fe-bound OC loss was mostly similar to elevated anoxic SOC decomposition in magnitude, and random forest modeling indicates that soils rich in reducible Fe, SOC, and Fe-reducing prokaryotes most likely experience elevated SOC decomposition under periodic anoxia. Overall, our findings demonstrate that fast anoxic decomposition of SOC is a potentially important pathway that may stimulate SOC loss under climate change-mediated intense hydrologic regimes, particularly for soils rich in reducible Fe and SOC.
土壤有机碳(SOC)分解是土壤 - 大气碳交换的基础,并受气候变化介导的土壤氧化还原条件变化的调节。周期性缺氧通常发生在降水、土壤洪水和侵蚀事件之后,被认为可以保护土壤有机碳。然而,与不饱和条件相比,水分饱和也可能增加土壤有机碳的分解,先前研究中的矛盾结果仍未得到解释。在这里,通过对在中国24°纬度梯度上采集的20种土壤进行培养实验,我们发现70%的土壤与好氧处理相比,显示出更高或相似的缺氧条件下土壤有机碳分解速率,表明在相对较短的缺氧条件下土壤有机碳快速损失。由于存在替代终端电子受体(TEAs),甲烷产量远低于二氧化碳。替代终端电子受体和微生物群落的变化表明,快速缺氧分解主要由铁(Fe)还原驱动,铁还原占缺氧条件下二氧化碳产生量的90%。同时,可提取有机碳(OC)、盐酸可提取亚铁、铁还原原核生物的相对丰度与土壤有机碳分解速率之间的正相关关系表明,铁还原后释放出易于代谢的底物。这种释放为缺氧代谢提供了底物,并可能导致铁保护的有机碳(Fe结合有机碳;好氧条件下的慢循环有机碳库)损失。质量平衡计算证实,Fe结合有机碳损失在幅度上大多与缺氧条件下土壤有机碳分解增加相似,随机森林模型表明,富含可还原铁、土壤有机碳和铁还原原核生物的土壤在周期性缺氧条件下最有可能经历土壤有机碳分解增加。总体而言,我们的研究结果表明,土壤有机碳的快速缺氧分解是一条潜在的重要途径,可能在气候变化介导的强烈水文条件下刺激土壤有机碳损失,特别是对于富含可还原铁和土壤有机碳的土壤。