Suppr超能文献

缺氧土壤中高碳损失对生物地球化学理论和模型假设构成挑战。

High carbon losses from oxygen-limited soils challenge biogeochemical theory and model assumptions.

机构信息

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA.

College of Life Science, Northwest University, Xi'an, China.

出版信息

Glob Chang Biol. 2021 Dec;27(23):6166-6180. doi: 10.1111/gcb.15867. Epub 2021 Sep 12.

Abstract

Oxygen (O ) limitation contributes to persistence of large carbon (C) stocks in saturated soils. However, many soils experience spatiotemporal O  fluctuations impacted by climate and land-use change, and O -mediated climate feedbacks from soil greenhouse gas emissions remain poorly constrained. Current theory and models posit that anoxia uniformly suppresses carbon (C) decomposition. Here we show that periodic anoxia may sustain or even stimulate decomposition over weeks to months in two disparate soils by increasing turnover and/or size of fast-cycling C pools relative to static oxic conditions, and by sustaining decomposition of reduced organic molecules. Cumulative C losses did not decrease consistently as cumulative O exposure decreased. After >1 year, soils anoxic for 75% of the time had similar C losses as the oxic control but nearly threefold greater climate impact on a CO -equivalent basis (20-year timescale) due to high methane (CH ) emission. A mechanistic model incorporating current theory closely reproduced oxic control results but systematically underestimated C losses under O  fluctuations. Using a model-experiment integration (ModEx) approach, we found that models were improved by varying microbial maintenance respiration and the fraction of CH production in total C mineralization as a function of O availability. Consistent with thermodynamic expectations, the calibrated models predicted lower microbial C-use efficiency with increasing anoxic duration in one soil; in the other soil, dynamic organo-mineral interactions implied by our empirical data but not represented in the model may have obscured this relationship. In both soils, the updated model was better able to capture transient spikes in C mineralization that occurred following anoxic-oxic transitions, where decomposition from the fluctuating-O treatments greatly exceeded the control. Overall, our data-model comparison indicates that incorporating emergent biogeochemical properties of soil O variability will be critical for effectively modeling C-climate feedbacks in humid ecosystems.

摘要

氧气 (O ) 限制导致饱和土壤中大量碳 (C) 储量的持续存在。然而,许多土壤经历时空 O 波动,受到气候和土地利用变化的影响,而土壤温室气体排放的 O 介导的气候反馈仍然受到很大限制。当前的理论和模型假设缺氧会均匀地抑制碳 (C) 的分解。在这里,我们表明,周期性缺氧可能会通过增加快速循环 C 库的周转率和/或大小,相对于静态好氧条件,以及维持还原有机分子的分解,在两周到几个月的时间内维持或甚至刺激两种不同土壤中的分解。随着累积 O 暴露的减少,累积 C 损失并没有一致减少。在 >1 年后,75%时间处于缺氧状态的土壤的 C 损失与好氧对照相似,但由于甲烷 (CH ) 排放量高,对 CO 当量的气候影响几乎增加了三倍(20 年时间尺度)。一个包含当前理论的机制模型密切复制了好氧对照的结果,但系统地低估了 O 波动下的 C 损失。通过使用模型-实验整合 (ModEx) 方法,我们发现通过改变微生物维持呼吸和 CH 总产量中 C 矿化的分数作为 O 可用性的函数,可以改进模型。与热力学预期一致,校准模型预测在一种土壤中,随着缺氧持续时间的增加,微生物 C 利用效率降低;在另一种土壤中,我们的经验数据所暗示的动态有机-矿物相互作用,但模型中没有表示,可能掩盖了这种关系。在这两种土壤中,更新后的模型能够更好地捕捉缺氧-好氧转变后发生的 C 矿化的瞬态尖峰,其中来自波动 O 处理的分解大大超过对照。总体而言,我们的数据-模型比较表明,纳入土壤 O 变异性的新兴生物地球化学特性对于有效模拟湿润生态系统中的 C-气候反馈将是至关重要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验