Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan.
Nature. 2023 Feb;614(7949):682-687. doi: 10.1038/s41586-022-05685-y. Epub 2023 Feb 22.
The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized. Whereas present-day probes can access a variety of electronic properties at a single location in space, a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope-the quantum twisting microscope (QTM)-capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials.
扫描探针显微镜的发明彻底改变了电子现象的可视化方式。虽然目前的探针可以在空间中的一个单一位置获取各种电子特性,但如果有一种扫描显微镜能够直接探测到几个位置的电子量子力学存在,那么它将能够直接访问电子系统的关键量子特性,而这些特性迄今为止是无法触及的。在这里,我们展示了一种全新的扫描探针显微镜——量子扭转显微镜(QTM),它能够在其尖端进行局部干涉实验。QTM 基于独特的范德华尖端,能够创建原始的二维结,为电子进入样品提供了多种相干干扰路径。通过在尖端和样品之间连续扫描扭转角,这种显微镜可以在动量空间中探测电子,类似于扫描隧道显微镜在实空间中探测电子的方式。通过一系列实验,我们在尖端展示了室温量子相干性,研究了扭曲双层石墨烯的扭转角演化,直接成像了单层和扭曲双层石墨烯的能带结构,最后在可视化扭曲双层石墨烯的低能带逐渐变平时施加了大的局部压力。QTM 为量子材料的新一类实验开辟了道路。