Suppr超能文献

使用基于MRI和临床病理变量的模型进行个性化乳腺癌预后评估

Personalized Breast Cancer Prognosis Using a Model Based on MRI and Clinicopathological Variables.

作者信息

Mohebbi Alisa, Mohammadzadeh Saeed, Mohammadi Afshin, Tavangar Seyed Mohammad

机构信息

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

J Imaging Inform Med. 2025 Apr 15. doi: 10.1007/s10278-025-01500-y.

Abstract

This study aimed to develop and internally validate a prognostic prediction model based on MRI, pathological, and clinical findings to predict breast cancer recurrence and death. A retrospective study prediction model was developed using data from 922 breast cancer patients recruited in Duke University Hospital from January 2000 to March 2014. Cox and binary logistic regressions were implemented for hazard score and 2-, 3-, 5-, and 8-year survivals and recurrences. After assessing the collinearity of predictors, both univariable and multivariable analyses were performed. Qualitative and quantitative MRI variables were selected based on clinical expert opinion and literature review. Bootstrap and leave-one-out methods were used for internal validation. Calibration, shrinkage, time-dependent receiver operating characteristic (ROC) curve, and decision-curve analyses were also performed. Finally, a user-friendly calculator was built. Of included participants, 62 (6.72%) died with a mean patient-year follow-up of 8.89 years (CI = 8.74 to 9.04), while 90 (9.76%) experienced recurrence with mean patient-year follow-up of 8.20 years (CI = 7.92 to 8.48). The Akaike information criterion (AIC) value of survival and recurrence models were 752.9 and 1020.7, indicating a good balance between model complexity and fit. Validation model adjusted area under curve (AUC) in 8-, 5-, 3-, and 2-year survivals were 0.740 (CI = 0.711 to 0.768), 0.741 (CI = 0.712 to 0.770), 0.788 (CI = 0.761 to 0.816), and 0.783 (CI = 0.755 to 0.809), while in 8-, 5-, and 3-year recurrences were 0.678 (CI = 0.647 to 0.708), 0.696 (CI = 0.664 to 0.727), and 0.769 (CI = 0.740 to 0.798), respectively. Good calibration and shrinkage parameters were achieved. The internal validation and decision curve analyses highlighted the usefulness of the model across all probability levels. The combined MRI-pathological-clinical model has excellent performance in predicting overall survival and recurrence of breast cancer and may have a role to play in daily personalized breast cancer therapy.

摘要

本研究旨在开发并在内部验证一种基于磁共振成像(MRI)、病理及临床结果的预后预测模型,以预测乳腺癌复发和死亡情况。利用2000年1月至2014年3月在杜克大学医院招募的922例乳腺癌患者的数据,开发了一种回顾性研究预测模型。对风险评分以及2年、3年、5年和8年生存率及复发率进行了Cox回归和二元逻辑回归分析。在评估预测因素的共线性后,进行了单变量和多变量分析。基于临床专家意见和文献综述选择了定性和定量的MRI变量。采用自助法和留一法进行内部验证。还进行了校准、收缩、时间依赖性受试者工作特征(ROC)曲线和决策曲线分析。最后,构建了一个用户友好型计算器。纳入的参与者中,62例(6.72%)死亡,患者年平均随访时间为8.89年(CI = 8.74至9.04),而90例(9.76%)出现复发,患者年平均随访时间为8.20年(CI = 7.92至8.48)。生存和复发模型的赤池信息准则(AIC)值分别为752.9和1020.7,表明模型复杂性和拟合度之间达到了良好平衡。验证模型在8年、5年、3年和2年生存率中的调整曲线下面积(AUC)分别为0.740(CI = 0.711至0.768)、0.741(CI = 0.712至0.770)、0.788(CI = 0.761至0.816)和0.783(CI = 0.755至0.809),而在8年、5年和3年复发率中的AUC分别为0.678(CI = 0.647至0.708)、0.696(CI = 0.664至0.727)和0.769(CI = 0.740至0.798)。实现了良好的校准和收缩参数。内部验证和决策曲线分析突出了该模型在所有概率水平上的有用性。MRI-病理-临床联合模型在预测乳腺癌总体生存和复发方面具有优异性能,可能在日常个性化乳腺癌治疗中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验