远处无复发生存与乳腺癌中算法提取的 MRI 特征的关联。

Association of distant recurrence-free survival with algorithmically extracted MRI characteristics in breast cancer.

机构信息

Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA.

Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

J Magn Reson Imaging. 2019 Jun;49(7):e231-e240. doi: 10.1002/jmri.26648. Epub 2019 Jan 22.

Abstract

BACKGROUND

While important in diagnosis of breast cancer, the scientific assessment of the role of imaging in prognosis of outcomes and treatment planning is limited.

PURPOSE

To evaluate the potential of using quantitative imaging variables for stratifying risk of distant recurrence in breast cancer patients.

STUDY TYPE

Retrospective.

POPULATION

In all, 892 female invasive breast cancer patients.

SEQUENCE

Dynamic contrast-enhanced MRI with field strength 1.5 T and 3 T.

ASSESSMENT

Computer vision algorithms were applied to extract a comprehensive set of 529 imaging features quantifying size, shape, enhancement patterns, and heterogeneity of the tumors and the surrounding tissue. Using a development set with 446 cases, we selected 20 imaging features with high prognostic value.

STATISTICAL TESTS

We evaluated the imaging features using an independent test set with 446 cases. The principal statistical measure was a concordance index between individual imaging features and patient distant recurrence-free survival (DRFS).

RESULTS

The strongest association with DRFS that persisted after controlling for known prognostic clinical and pathology variables was found for signal enhancement ratio (SER) partial tumor volume (concordance index [C] = 0.768, 95% confidence interval [CI]: 0.679-0.856), tumor major axis length (C = 0.742, 95% CI: 0.650-0.834), kurtosis of the SER map within tumor (C = 0.640, 95% CI: 0.521-0.760), tumor cluster shade (C = 0.313, 95% CI: 0.216-0.410), and washin rate information measure of correlation (C = 0.702, 95% CI: 0.601-0.803).

DATA CONCLUSION

Quantitative assessment of breast cancer features seen in a routine breast MRI might be able to be used for assessment of risk of distant recurrence.

LEVEL OF EVIDENCE

4 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2019.

摘要

背景

尽管在乳腺癌的诊断中很重要,但影像学在预后和治疗计划中的作用的科学评估是有限的。

目的

评估使用定量成像变量对乳腺癌患者远处复发风险进行分层的潜力。

研究类型

回顾性。

人群

共 892 名女性浸润性乳腺癌患者。

序列

场强为 1.5 T 和 3 T 的动态对比增强 MRI。

评估

应用计算机视觉算法提取了一套全面的 529 个成像特征,定量评估肿瘤和周围组织的大小、形状、增强模式和异质性。在包含 446 例病例的开发集上,我们选择了 20 个具有高预后价值的成像特征。

统计学检验

我们使用包含 446 例病例的独立测试集评估了这些成像特征。主要的统计测量是个体成像特征与患者远处无复发生存率(DRFS)之间的一致性指数。

结果

与 DRFS 相关性最强且在控制已知预后临床和病理变量后仍然存在的是肿瘤部分信号增强比(SER)体积(一致性指数 [C] = 0.768,95%置信区间 [CI]:0.679-0.856)、肿瘤长轴长度(C = 0.742,95% CI:0.650-0.834)、肿瘤内 SER 图的峰度(C = 0.640,95% CI:0.521-0.760)、肿瘤簇阴影(C = 0.313,95% CI:0.216-0.410)和洗出率信息测度相关系数(C = 0.702,95% CI:0.601-0.803)。

数据结论

常规乳腺 MRI 中观察到的乳腺癌特征的定量评估可能能够用于评估远处复发的风险。

证据水平

4 技术功效:6 级 J. 磁共振成像 2019 年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索