文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

C型利钠肽通过NPRB-PPAR途径调节鸡肌肉和皮下脂肪细胞的脂质代谢。

C-type natriuretic peptide regulates lipid metabolism through a NPRB-PPAR pathway in the intramuscular and subcutaneous adipocytes in chickens.

作者信息

Huang Huayun, Liu Longzhou, Liang Zhong, Wang Qianbao, Li Chunmiao, Huang Zhengyang, Zhao Zhenhua, Han Wei

机构信息

Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China.

College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China.

出版信息

Sci Rep. 2025 Apr 15;15(1):13018. doi: 10.1038/s41598-025-86433-w.


DOI:10.1038/s41598-025-86433-w
PMID:40234429
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12000514/
Abstract

Natriuretic peptides (NPs) have an important role in lipid metabolism in skeletal muscle and adipose tissue in animals. C-type natriuretic peptide (CNP) is an important NP, but the molecular mechanisms that underlie its activity are not completely understood. Treatment of intramuscular fat (IMF) and subcutaneous fat (SCF) adipocytes with CNP led to decreased differentiation, promoted proliferation and lipolysis, and increased the expression of natriuretic peptide receptor B (NPRB) mRNA. Silencing natriuretic peptide C (NPPC) had the opposite results in IMF and SCF adipocytes. Transcriptome analysis found 665 differentially expressed genes (DEGs) in IMF adipocytes and 991 in SCF adipocytes. Seven genes in IMF adipocytes (FABP4, APOA1, ACOX2, ADIPOQ, CD36, FABP5, and LPL) and eight genes in SCF adipocytes (ACOX3, ACSL1, APOA1, CPT1A, CPT2, FABP4, PDPK1 and PPARα) are related to fat metabolism. Fifteen genes were found to be enriched in the peroxisome proliferator-activated receptor (PPAR) pathway. Integrated analysis identified 113 intersection genes in IMF and SCF adipocytes, two of which (APOA1 and FABP4) were enriched in the PPAR pathway. In conclusion, CNP may regulated lipid metabolism through the NPRB-PPAR pathway in both IMF and SCF adipocytes, FABP4 and APOA1 may be the key genes that mediated CNP regulation of fat deposition.

摘要

利钠肽(NPs)在动物骨骼肌和脂肪组织的脂质代谢中发挥着重要作用。C型利钠肽(CNP)是一种重要的利钠肽,但其活性的分子机制尚未完全明确。用CNP处理肌内脂肪(IMF)和皮下脂肪(SCF)脂肪细胞,可导致分化减少、增殖和脂肪分解增加,并使利钠肽受体B(NPRB)mRNA的表达增加。沉默利钠肽C(NPPC)在IMF和SCF脂肪细胞中产生相反的结果。转录组分析发现,IMF脂肪细胞中有665个差异表达基因(DEGs),SCF脂肪细胞中有991个。IMF脂肪细胞中的7个基因(FABP4、APOA1、ACOX2、ADIPOQ、CD36、FABP5和LPL)和SCF脂肪细胞中的8个基因(ACOX3、ACSL1、APOA1、CPT1A、CPT2、FABP4、PDPK1和PPARα)与脂肪代谢有关。发现有15个基因在过氧化物酶体增殖物激活受体(PPAR)途径中富集。综合分析在IMF和SCF脂肪细胞中鉴定出113个交集基因,其中两个(APOA1和FABP4)在PPAR途径中富集。总之,CNP可能通过NPRB-PPAR途径在IMF和SCF脂肪细胞中调节脂质代谢,FABP4和APOA1可能是介导CNP调节脂肪沉积的关键基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/c65ccba9eccd/41598_2025_86433_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/e1a4a2f592d5/41598_2025_86433_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/b35b756e9cad/41598_2025_86433_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/b575569a0de6/41598_2025_86433_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/f68542ba1f92/41598_2025_86433_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/e204aaf9b5fc/41598_2025_86433_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/98b0155bf5a0/41598_2025_86433_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/ef99ccb35f59/41598_2025_86433_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/12cb196a4fdd/41598_2025_86433_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/1576003cef2d/41598_2025_86433_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/5b5d0b37a8c2/41598_2025_86433_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/736279b97a56/41598_2025_86433_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/6206e1b38764/41598_2025_86433_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/2c265f485ec0/41598_2025_86433_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/fbe7cc8ac99f/41598_2025_86433_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/6ebd9021f71b/41598_2025_86433_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/0b55f483a985/41598_2025_86433_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/568709dfa547/41598_2025_86433_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/33a8b3632cee/41598_2025_86433_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/0e4f002a6188/41598_2025_86433_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/88bd2783a021/41598_2025_86433_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/9b5cd5f5e922/41598_2025_86433_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/c65ccba9eccd/41598_2025_86433_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/e1a4a2f592d5/41598_2025_86433_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/b35b756e9cad/41598_2025_86433_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/b575569a0de6/41598_2025_86433_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/f68542ba1f92/41598_2025_86433_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/e204aaf9b5fc/41598_2025_86433_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/98b0155bf5a0/41598_2025_86433_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/ef99ccb35f59/41598_2025_86433_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/12cb196a4fdd/41598_2025_86433_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/1576003cef2d/41598_2025_86433_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/5b5d0b37a8c2/41598_2025_86433_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/736279b97a56/41598_2025_86433_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/6206e1b38764/41598_2025_86433_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/2c265f485ec0/41598_2025_86433_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/fbe7cc8ac99f/41598_2025_86433_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/6ebd9021f71b/41598_2025_86433_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/0b55f483a985/41598_2025_86433_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/568709dfa547/41598_2025_86433_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/33a8b3632cee/41598_2025_86433_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/0e4f002a6188/41598_2025_86433_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/88bd2783a021/41598_2025_86433_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/9b5cd5f5e922/41598_2025_86433_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1e/12000514/c65ccba9eccd/41598_2025_86433_Fig22_HTML.jpg

相似文献

[1]
C-type natriuretic peptide regulates lipid metabolism through a NPRB-PPAR pathway in the intramuscular and subcutaneous adipocytes in chickens.

Sci Rep. 2025-4-15

[2]
LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways.

Cells. 2020-12-4

[3]
Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro.

BMC Genomics. 2019-10-15

[4]
Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens.

BMC Genomics. 2019-11-15

[5]
Adipocyte-specific expression of C-type natriuretic peptide suppresses lipid metabolism and adipocyte hypertrophy in adipose tissues in mice fed high-fat diet.

Sci Rep. 2018-2-1

[6]
Brain Natriuretic Peptide Stimulates Lipid Metabolism through Its Receptor NPR1 and the Glycerolipid Metabolism Pathway in Chicken Adipocytes.

Biochemistry. 2015-11-3

[7]
miR-32-5p Regulates Lipid Accumulation in Intramuscular Fat of Erhualian Pigs by Suppressing KLF3.

Lipids. 2021-5

[8]
Exercise performance is not improved in mice with skeletal muscle deletion of natriuretic peptide clearance receptor.

PLoS One. 2023

[9]
LncBNIP3 Inhibits Bovine Intramuscular Preadipocyte Differentiation via the PI3K-Akt and PPAR Signaling Pathways.

J Agric Food Chem. 2024-11-6

[10]
Expression of genes involved in adipogenesis and lipid metabolism in subcutaneous adipose tissue and longissimus muscle in low-marbled Pirenaica beef cattle.

Animal. 2016-6-24

引用本文的文献

[1]
A β-cyclodextrin/AuNPs@MWCNT/chitosan-hydrogel-based 3D stochastic sensor for simultaneous determination of vascular cell adhesion molecule-1, interleukin-6, and natriuretic peptide C-type in whole blood samples.

Mikrochim Acta. 2025-9-5

[2]
Research advances in intramuscular fat deposition and chicken meat quality: genetics and nutrition.

J Anim Sci Biotechnol. 2025-7-16

本文引用的文献

[1]
KEGG for taxonomy-based analysis of pathways and genomes.

Nucleic Acids Res. 2023-1-6

[2]
iTRAQ-based quantitative proteomics analysis of Sprague-Dawley rats liver reveals perfluorooctanoic acid-induced lipid metabolism and urea cycle dysfunction.

Toxicol Lett. 2022-3-1

[3]
Loss of Muscle Carnitine Palmitoyltransferase 2 Prevents Diet-Induced Obesity and Insulin Resistance despite Long-Chain Acylcarnitine Accumulation.

Cell Rep. 2020-11-10

[4]
Toward understanding the origin and evolution of cellular organisms.

Protein Sci. 2019-9-9

[5]
Adipocyte-specific expression of C-type natriuretic peptide suppresses lipid metabolism and adipocyte hypertrophy in adipose tissues in mice fed high-fat diet.

Sci Rep. 2018-2-1

[6]
A novel case of ACOX2 deficiency leads to recognition of a third human peroxisomal acyl-CoA oxidase.

Biochim Biophys Acta Mol Basis Dis. 2017-12-26

[7]
Overexpression of C-type Natriuretic Peptide in Endothelial Cells Protects against Insulin Resistance and Inflammation during Diet-induced Obesity.

Sci Rep. 2017-8-29

[8]
Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken.

PLoS One. 2017-2-15

[9]
New insights into thyroid hormone action.

Pharmacol Ther. 2017-5

[10]
Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens.

Sci Rep. 2015-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索